Initial IPEX support
This commit is contained in:
parent
f0f100e67b
commit
8b40f475a3
|
@ -3,7 +3,7 @@ import contextlib
|
|||
from functools import lru_cache
|
||||
|
||||
import torch
|
||||
from modules import errors, shared
|
||||
from modules import errors, shared, xpu_specific
|
||||
|
||||
if sys.platform == "darwin":
|
||||
from modules import mac_specific
|
||||
|
@ -30,6 +30,9 @@ def get_optimal_device_name():
|
|||
if has_mps():
|
||||
return "mps"
|
||||
|
||||
if xpu_specific.has_ipex:
|
||||
return xpu_specific.get_xpu_device_string()
|
||||
|
||||
return "cpu"
|
||||
|
||||
|
||||
|
@ -100,11 +103,15 @@ def autocast(disable=False):
|
|||
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
|
||||
return contextlib.nullcontext()
|
||||
|
||||
if xpu_specific.has_xpu:
|
||||
return torch.autocast("xpu")
|
||||
|
||||
return torch.autocast("cuda")
|
||||
|
||||
|
||||
def without_autocast(disable=False):
|
||||
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
|
||||
device_type = "xpu" if xpu_specific.has_xpu else "cuda"
|
||||
return torch.autocast(device_type, enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
|
||||
|
||||
|
||||
class NansException(Exception):
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
import contextlib
|
||||
from modules import shared
|
||||
from modules.sd_hijack_utils import CondFunc
|
||||
|
||||
has_ipex = False
|
||||
try:
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
has_ipex = True
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def check_for_xpu():
|
||||
if not has_ipex:
|
||||
return False
|
||||
|
||||
return hasattr(torch, 'xpu') and torch.xpu.is_available()
|
||||
|
||||
has_xpu = check_for_xpu()
|
||||
|
||||
def get_xpu_device_string():
|
||||
if shared.cmd_opts.device_id is not None:
|
||||
return f"xpu:{shared.cmd_opts.device_id}"
|
||||
return "xpu"
|
||||
|
||||
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
||||
return contextlib.nullcontext()
|
||||
|
||||
if has_xpu:
|
||||
CondFunc('torch.Generator',
|
||||
lambda orig_func, device=None: torch.xpu.Generator(device),
|
||||
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
|
||||
|
||||
CondFunc('torch.nn.functional.layer_norm',
|
||||
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||||
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
||||
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||||
weight is not None and input.dtype != weight.data.dtype)
|
||||
|
||||
CondFunc('torch.nn.modules.GroupNorm.forward',
|
||||
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
||||
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
Loading…
Reference in New Issue