Initial IPEX support

This commit is contained in:
Nuullll 2023-11-10 11:06:26 +08:00
parent f0f100e67b
commit 8b40f475a3
2 changed files with 51 additions and 2 deletions

View File

@ -3,7 +3,7 @@ import contextlib
from functools import lru_cache
import torch
from modules import errors, shared
from modules import errors, shared, xpu_specific
if sys.platform == "darwin":
from modules import mac_specific
@ -30,6 +30,9 @@ def get_optimal_device_name():
if has_mps():
return "mps"
if xpu_specific.has_ipex:
return xpu_specific.get_xpu_device_string()
return "cpu"
@ -100,11 +103,15 @@ def autocast(disable=False):
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
if xpu_specific.has_xpu:
return torch.autocast("xpu")
return torch.autocast("cuda")
def without_autocast(disable=False):
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
device_type = "xpu" if xpu_specific.has_xpu else "cuda"
return torch.autocast(device_type, enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
class NansException(Exception):

42
modules/xpu_specific.py Normal file
View File

@ -0,0 +1,42 @@
import contextlib
from modules import shared
from modules.sd_hijack_utils import CondFunc
has_ipex = False
try:
import torch
import intel_extension_for_pytorch as ipex
has_ipex = True
except Exception:
pass
def check_for_xpu():
if not has_ipex:
return False
return hasattr(torch, 'xpu') and torch.xpu.is_available()
has_xpu = check_for_xpu()
def get_xpu_device_string():
if shared.cmd_opts.device_id is not None:
return f"xpu:{shared.cmd_opts.device_id}"
return "xpu"
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext()
if has_xpu:
CondFunc('torch.Generator',
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
CondFunc('torch.nn.functional.layer_norm',
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
weight is not None and input.dtype != weight.data.dtype)
CondFunc('torch.nn.modules.GroupNorm.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)