Merge pull request #14208 from CodeHatchling/soft-inpainting
Soft Inpainting
This commit is contained in:
commit
8c32594d3b
|
@ -791,3 +791,4 @@ def flatten(img, bgcolor):
|
|||
img = background
|
||||
|
||||
return img.convert('RGB')
|
||||
|
||||
|
|
|
@ -62,18 +62,22 @@ def apply_color_correction(correction, original_image):
|
|||
return image.convert('RGB')
|
||||
|
||||
|
||||
def apply_overlay(image, paste_loc, index, overlays):
|
||||
if overlays is None or index >= len(overlays):
|
||||
def uncrop(image, dest_size, paste_loc):
|
||||
x, y, w, h = paste_loc
|
||||
base_image = Image.new('RGBA', dest_size)
|
||||
image = images.resize_image(1, image, w, h)
|
||||
base_image.paste(image, (x, y))
|
||||
image = base_image
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def apply_overlay(image, paste_loc, overlay):
|
||||
if overlay is None:
|
||||
return image
|
||||
|
||||
overlay = overlays[index]
|
||||
|
||||
if paste_loc is not None:
|
||||
x, y, w, h = paste_loc
|
||||
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
||||
image = images.resize_image(1, image, w, h)
|
||||
base_image.paste(image, (x, y))
|
||||
image = base_image
|
||||
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
|
||||
|
||||
image = image.convert('RGBA')
|
||||
image.alpha_composite(overlay)
|
||||
|
@ -81,9 +85,12 @@ def apply_overlay(image, paste_loc, index, overlays):
|
|||
|
||||
return image
|
||||
|
||||
def create_binary_mask(image):
|
||||
def create_binary_mask(image, round=True):
|
||||
if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
|
||||
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
|
||||
if round:
|
||||
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
|
||||
else:
|
||||
image = image.split()[-1].convert("L")
|
||||
else:
|
||||
image = image.convert('L')
|
||||
return image
|
||||
|
@ -308,7 +315,7 @@ class StableDiffusionProcessing:
|
|||
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
||||
return c_adm
|
||||
|
||||
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
|
||||
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
|
||||
self.is_using_inpainting_conditioning = True
|
||||
|
||||
# Handle the different mask inputs
|
||||
|
@ -320,8 +327,10 @@ class StableDiffusionProcessing:
|
|||
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
|
||||
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
|
||||
|
||||
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
||||
conditioning_mask = torch.round(conditioning_mask)
|
||||
if round_image_mask:
|
||||
# Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
|
||||
conditioning_mask = torch.round(conditioning_mask)
|
||||
|
||||
else:
|
||||
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
||||
|
||||
|
@ -345,7 +354,7 @@ class StableDiffusionProcessing:
|
|||
|
||||
return image_conditioning
|
||||
|
||||
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
|
||||
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
|
||||
source_image = devices.cond_cast_float(source_image)
|
||||
|
||||
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
||||
|
@ -357,7 +366,7 @@ class StableDiffusionProcessing:
|
|||
return self.edit_image_conditioning(source_image)
|
||||
|
||||
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
||||
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
||||
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
|
||||
|
||||
if self.sampler.conditioning_key == "crossattn-adm":
|
||||
return self.unclip_image_conditioning(source_image)
|
||||
|
@ -867,6 +876,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
||||
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
||||
|
||||
if p.scripts is not None:
|
||||
ps = scripts.PostSampleArgs(samples_ddim)
|
||||
p.scripts.post_sample(p, ps)
|
||||
samples_ddim = ps.samples
|
||||
|
||||
if getattr(samples_ddim, 'already_decoded', False):
|
||||
x_samples_ddim = samples_ddim
|
||||
else:
|
||||
|
@ -922,13 +936,31 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
pp = scripts.PostprocessImageArgs(image)
|
||||
p.scripts.postprocess_image(p, pp)
|
||||
image = pp.image
|
||||
|
||||
mask_for_overlay = getattr(p, "mask_for_overlay", None)
|
||||
overlay_image = p.overlay_images[i] if getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images) else None
|
||||
|
||||
if p.scripts is not None:
|
||||
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
|
||||
p.scripts.postprocess_maskoverlay(p, ppmo)
|
||||
mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
|
||||
|
||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||
if save_samples and opts.save_images_before_color_correction:
|
||||
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
|
||||
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
|
||||
image = apply_color_correction(p.color_corrections[i], image)
|
||||
|
||||
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
# If the intention is to show the output from the model
|
||||
# that is being composited over the original image,
|
||||
# we need to keep the original image around
|
||||
# and use it in the composite step.
|
||||
original_denoised_image = image.copy()
|
||||
|
||||
if p.paste_to is not None:
|
||||
original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
|
||||
|
||||
image = apply_overlay(image, p.paste_to, overlay_image)
|
||||
|
||||
if save_samples:
|
||||
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
|
||||
|
@ -938,16 +970,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
if opts.enable_pnginfo:
|
||||
image.info["parameters"] = text
|
||||
output_images.append(image)
|
||||
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
|
||||
|
||||
if mask_for_overlay is not None:
|
||||
if opts.return_mask or opts.save_mask:
|
||||
image_mask = p.mask_for_overlay.convert('RGB')
|
||||
image_mask = mask_for_overlay.convert('RGB')
|
||||
if save_samples and opts.save_mask:
|
||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
||||
if opts.return_mask:
|
||||
output_images.append(image_mask)
|
||||
|
||||
if opts.return_mask_composite or opts.save_mask_composite:
|
||||
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||
image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||
if save_samples and opts.save_mask_composite:
|
||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
||||
if opts.return_mask_composite:
|
||||
|
@ -1351,6 +1384,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
mask_blur_x: int = 4
|
||||
mask_blur_y: int = 4
|
||||
mask_blur: int = None
|
||||
mask_round: bool = True
|
||||
inpainting_fill: int = 0
|
||||
inpaint_full_res: bool = True
|
||||
inpaint_full_res_padding: int = 0
|
||||
|
@ -1396,7 +1430,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
if image_mask is not None:
|
||||
# image_mask is passed in as RGBA by Gradio to support alpha masks,
|
||||
# but we still want to support binary masks.
|
||||
image_mask = create_binary_mask(image_mask)
|
||||
image_mask = create_binary_mask(image_mask, round=self.mask_round)
|
||||
|
||||
if self.inpainting_mask_invert:
|
||||
image_mask = ImageOps.invert(image_mask)
|
||||
|
@ -1503,7 +1537,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||
latmask = latmask[0]
|
||||
latmask = np.around(latmask)
|
||||
if self.mask_round:
|
||||
latmask = np.around(latmask)
|
||||
latmask = np.tile(latmask[None], (4, 1, 1))
|
||||
|
||||
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
|
||||
|
@ -1515,7 +1550,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
elif self.inpainting_fill == 3:
|
||||
self.init_latent = self.init_latent * self.mask
|
||||
|
||||
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask)
|
||||
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
x = self.rng.next()
|
||||
|
@ -1527,7 +1562,14 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||
|
||||
if self.mask is not None:
|
||||
samples = samples * self.nmask + self.init_latent * self.mask
|
||||
blended_samples = samples * self.nmask + self.init_latent * self.mask
|
||||
|
||||
if self.scripts is not None:
|
||||
mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
|
||||
self.scripts.on_mask_blend(self, mba)
|
||||
blended_samples = mba.blended_latent
|
||||
|
||||
samples = blended_samples
|
||||
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
|
|
@ -11,11 +11,31 @@ from modules import shared, paths, script_callbacks, extensions, script_loading,
|
|||
|
||||
AlwaysVisible = object()
|
||||
|
||||
class MaskBlendArgs:
|
||||
def __init__(self, current_latent, nmask, init_latent, mask, blended_latent, denoiser=None, sigma=None):
|
||||
self.current_latent = current_latent
|
||||
self.nmask = nmask
|
||||
self.init_latent = init_latent
|
||||
self.mask = mask
|
||||
self.blended_latent = blended_latent
|
||||
|
||||
self.denoiser = denoiser
|
||||
self.is_final_blend = denoiser is None
|
||||
self.sigma = sigma
|
||||
|
||||
class PostSampleArgs:
|
||||
def __init__(self, samples):
|
||||
self.samples = samples
|
||||
|
||||
class PostprocessImageArgs:
|
||||
def __init__(self, image):
|
||||
self.image = image
|
||||
|
||||
class PostProcessMaskOverlayArgs:
|
||||
def __init__(self, index, mask_for_overlay, overlay_image):
|
||||
self.index = index
|
||||
self.mask_for_overlay = mask_for_overlay
|
||||
self.overlay_image = overlay_image
|
||||
|
||||
class PostprocessBatchListArgs:
|
||||
def __init__(self, images):
|
||||
|
@ -206,6 +226,25 @@ class Script:
|
|||
|
||||
pass
|
||||
|
||||
def on_mask_blend(self, p, mba: MaskBlendArgs, *args):
|
||||
"""
|
||||
Called in inpainting mode when the original content is blended with the inpainted content.
|
||||
This is called at every step in the denoising process and once at the end.
|
||||
If is_final_blend is true, this is called for the final blending stage.
|
||||
Otherwise, denoiser and sigma are defined and may be used to inform the procedure.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def post_sample(self, p, ps: PostSampleArgs, *args):
|
||||
"""
|
||||
Called after the samples have been generated,
|
||||
but before they have been decoded by the VAE, if applicable.
|
||||
Check getattr(samples, 'already_decoded', False) to test if the images are decoded.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
|
||||
"""
|
||||
Called for every image after it has been generated.
|
||||
|
@ -213,6 +252,13 @@ class Script:
|
|||
|
||||
pass
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs, *args):
|
||||
"""
|
||||
Called for every image after it has been generated.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def postprocess(self, p, processed, *args):
|
||||
"""
|
||||
This function is called after processing ends for AlwaysVisible scripts.
|
||||
|
@ -767,6 +813,22 @@ class ScriptRunner:
|
|||
except Exception:
|
||||
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
|
||||
|
||||
def post_sample(self, p, ps: PostSampleArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.post_sample(p, ps, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def on_mask_blend(self, p, mba: MaskBlendArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.on_mask_blend(p, mba, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
|
@ -775,6 +837,14 @@ class ScriptRunner:
|
|||
except Exception:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_maskoverlay(p, ppmo, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def before_component(self, component, **kwargs):
|
||||
for callback, script in self.on_before_component_elem_id.get(kwargs.get("elem_id"), []):
|
||||
try:
|
||||
|
|
|
@ -56,6 +56,9 @@ class CFGDenoiser(torch.nn.Module):
|
|||
self.sampler = sampler
|
||||
self.model_wrap = None
|
||||
self.p = None
|
||||
|
||||
# NOTE: masking before denoising can cause the original latents to be oversmoothed
|
||||
# as the original latents do not have noise
|
||||
self.mask_before_denoising = False
|
||||
|
||||
@property
|
||||
|
@ -105,8 +108,21 @@ class CFGDenoiser(torch.nn.Module):
|
|||
|
||||
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
|
||||
|
||||
# If we use masks, blending between the denoised and original latent images occurs here.
|
||||
def apply_blend(current_latent):
|
||||
blended_latent = current_latent * self.nmask + self.init_latent * self.mask
|
||||
|
||||
if self.p.scripts is not None:
|
||||
from modules import scripts
|
||||
mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
|
||||
self.p.scripts.on_mask_blend(self.p, mba)
|
||||
blended_latent = mba.blended_latent
|
||||
|
||||
return blended_latent
|
||||
|
||||
# Blend in the original latents (before)
|
||||
if self.mask_before_denoising and self.mask is not None:
|
||||
x = self.init_latent * self.mask + self.nmask * x
|
||||
x = apply_blend(x)
|
||||
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
|
@ -207,8 +223,9 @@ class CFGDenoiser(torch.nn.Module):
|
|||
else:
|
||||
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
||||
|
||||
# Blend in the original latents (after)
|
||||
if not self.mask_before_denoising and self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
denoised = apply_blend(denoised)
|
||||
|
||||
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|
||||
|
||||
|
|
|
@ -0,0 +1,747 @@
|
|||
import numpy as np
|
||||
import gradio as gr
|
||||
import math
|
||||
from modules.ui_components import InputAccordion
|
||||
import modules.scripts as scripts
|
||||
|
||||
|
||||
class SoftInpaintingSettings:
|
||||
def __init__(self,
|
||||
mask_blend_power,
|
||||
mask_blend_scale,
|
||||
inpaint_detail_preservation,
|
||||
composite_mask_influence,
|
||||
composite_difference_threshold,
|
||||
composite_difference_contrast):
|
||||
self.mask_blend_power = mask_blend_power
|
||||
self.mask_blend_scale = mask_blend_scale
|
||||
self.inpaint_detail_preservation = inpaint_detail_preservation
|
||||
self.composite_mask_influence = composite_mask_influence
|
||||
self.composite_difference_threshold = composite_difference_threshold
|
||||
self.composite_difference_contrast = composite_difference_contrast
|
||||
|
||||
def add_generation_params(self, dest):
|
||||
dest[enabled_gen_param_label] = True
|
||||
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
|
||||
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
|
||||
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
|
||||
dest[gen_param_labels.composite_mask_influence] = self.composite_mask_influence
|
||||
dest[gen_param_labels.composite_difference_threshold] = self.composite_difference_threshold
|
||||
dest[gen_param_labels.composite_difference_contrast] = self.composite_difference_contrast
|
||||
|
||||
|
||||
# ------------------- Methods -------------------
|
||||
|
||||
def processing_uses_inpainting(p):
|
||||
# TODO: Figure out a better way to determine if inpainting is being used by p
|
||||
if getattr(p, "image_mask", None) is not None:
|
||||
return True
|
||||
|
||||
if getattr(p, "mask", None) is not None:
|
||||
return True
|
||||
|
||||
if getattr(p, "nmask", None) is not None:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def latent_blend(settings, a, b, t):
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
The "detail_preservation" factor biases the magnitude interpolation towards
|
||||
the larger of the two magnitudes.
|
||||
"""
|
||||
import torch
|
||||
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
# [4][w][h] to [1][4][w][h]
|
||||
t2 = t.unsqueeze(0)
|
||||
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
||||
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
||||
|
||||
one_minus_t2 = 1 - t2
|
||||
one_minus_t3 = 1 - t3
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t2
|
||||
b_scaled = b * t2
|
||||
image_interp = a_scaled
|
||||
image_interp.add_(b_scaled)
|
||||
result_type = image_interp.dtype
|
||||
del a_scaled, b_scaled, t2, one_minus_t2
|
||||
|
||||
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
||||
# 64-bit operations are used here to allow large exponents.
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
|
||||
settings.inpaint_detail_preservation) * one_minus_t3
|
||||
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
|
||||
settings.inpaint_detail_preservation) * t3
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / settings.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, t3, one_minus_t3
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
# This is the last 64-bit operation.
|
||||
image_interp_scaling_factor = desired_magnitude
|
||||
image_interp_scaling_factor.div_(current_magnitude)
|
||||
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
|
||||
image_interp_scaled = image_interp
|
||||
image_interp_scaled.mul_(image_interp_scaling_factor)
|
||||
del current_magnitude
|
||||
del desired_magnitude
|
||||
del image_interp
|
||||
del image_interp_scaling_factor
|
||||
del result_type
|
||||
|
||||
return image_interp_scaled
|
||||
|
||||
|
||||
def get_modified_nmask(settings, nmask, sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
0 = fully opaque, infinite density, fully masked
|
||||
1 = fully transparent, zero density, fully unmasked
|
||||
|
||||
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
||||
where N can be any positive real value. Using this one can control the balance of influence between
|
||||
the denoiser and the original latents according to the sigma value.
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
import torch
|
||||
return torch.pow(nmask, (sigma ** settings.mask_blend_power) * settings.mask_blend_scale)
|
||||
|
||||
|
||||
def apply_adaptive_masks(
|
||||
settings: SoftInpaintingSettings,
|
||||
nmask,
|
||||
latent_orig,
|
||||
latent_processed,
|
||||
overlay_images,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
||||
latent_mask = nmask[0].float()
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
mask_scalar = 1 - (torch.clamp(latent_mask, min=0, max=1) ** (settings.mask_blend_scale / 2))
|
||||
mask_scalar = (0.5 * (1 - settings.composite_mask_influence)
|
||||
+ mask_scalar * settings.composite_mask_influence)
|
||||
mask_scalar = mask_scalar / (1.00001 - mask_scalar)
|
||||
mask_scalar = mask_scalar.cpu().numpy()
|
||||
|
||||
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
|
||||
|
||||
kernel, kernel_center = get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
||||
|
||||
masks_for_overlay = []
|
||||
|
||||
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
|
||||
converted_mask = distance_map.float().cpu().numpy()
|
||||
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.9, percentile_max=1, min_width=1)
|
||||
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
half_weighted_distance = settings.composite_difference_threshold * mask_scalar
|
||||
converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** settings.composite_difference_contrast)
|
||||
converted_mask = smootherstep(converted_mask)
|
||||
converted_mask = 1 - converted_mask
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc.uncrop(converted_mask,
|
||||
(overlay_image.width, overlay_image.height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay.append(converted_mask)
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
return masks_for_overlay
|
||||
|
||||
|
||||
def apply_masks(
|
||||
settings,
|
||||
nmask,
|
||||
overlay_images,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
converted_mask = nmask[0].float()
|
||||
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(settings.mask_blend_scale / 2)
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc.uncrop(converted_mask,
|
||||
(width, height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay = []
|
||||
|
||||
for i, overlay_image in enumerate(overlay_images):
|
||||
masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
return masks_for_overlay
|
||||
|
||||
|
||||
def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0):
|
||||
"""
|
||||
Generalization convolution filter capable of applying
|
||||
weighted mean, median, maximum, and minimum filters
|
||||
parametrically using an arbitrary kernel.
|
||||
|
||||
Args:
|
||||
img (nparray):
|
||||
The image, a 2-D array of floats, to which the filter is being applied.
|
||||
kernel (nparray):
|
||||
The kernel, a 2-D array of floats.
|
||||
kernel_center (nparray):
|
||||
The kernel center coordinate, a 1-D array with two elements.
|
||||
percentile_min (float):
|
||||
The lower bound of the histogram window used by the filter,
|
||||
from 0 to 1.
|
||||
percentile_max (float):
|
||||
The upper bound of the histogram window used by the filter,
|
||||
from 0 to 1.
|
||||
min_width (float):
|
||||
The minimum size of the histogram window bounds, in weight units.
|
||||
Must be greater than 0.
|
||||
|
||||
Returns:
|
||||
(nparray): A filtered copy of the input image "img", a 2-D array of floats.
|
||||
"""
|
||||
|
||||
# Converts an index tuple into a vector.
|
||||
def vec(x):
|
||||
return np.array(x)
|
||||
|
||||
kernel_min = -kernel_center
|
||||
kernel_max = vec(kernel.shape) - kernel_center
|
||||
|
||||
def weighted_histogram_filter_single(idx):
|
||||
idx = vec(idx)
|
||||
min_index = np.maximum(0, idx + kernel_min)
|
||||
max_index = np.minimum(vec(img.shape), idx + kernel_max)
|
||||
window_shape = max_index - min_index
|
||||
|
||||
class WeightedElement:
|
||||
"""
|
||||
An element of the histogram, its weight
|
||||
and bounds.
|
||||
"""
|
||||
|
||||
def __init__(self, value, weight):
|
||||
self.value: float = value
|
||||
self.weight: float = weight
|
||||
self.window_min: float = 0.0
|
||||
self.window_max: float = 1.0
|
||||
|
||||
# Collect the values in the image as WeightedElements,
|
||||
# weighted by their corresponding kernel values.
|
||||
values = []
|
||||
for window_tup in np.ndindex(tuple(window_shape)):
|
||||
window_index = vec(window_tup)
|
||||
image_index = window_index + min_index
|
||||
centered_kernel_index = image_index - idx
|
||||
kernel_index = centered_kernel_index + kernel_center
|
||||
element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)])
|
||||
values.append(element)
|
||||
|
||||
def sort_key(x: WeightedElement):
|
||||
return x.value
|
||||
|
||||
values.sort(key=sort_key)
|
||||
|
||||
# Calculate the height of the stack (sum)
|
||||
# and each sample's range they occupy in the stack
|
||||
sum = 0
|
||||
for i in range(len(values)):
|
||||
values[i].window_min = sum
|
||||
sum += values[i].weight
|
||||
values[i].window_max = sum
|
||||
|
||||
# Calculate what range of this stack ("window")
|
||||
# we want to get the weighted average across.
|
||||
window_min = sum * percentile_min
|
||||
window_max = sum * percentile_max
|
||||
window_width = window_max - window_min
|
||||
|
||||
# Ensure the window is within the stack and at least a certain size.
|
||||
if window_width < min_width:
|
||||
window_center = (window_min + window_max) / 2
|
||||
window_min = window_center - min_width / 2
|
||||
window_max = window_center + min_width / 2
|
||||
|
||||
if window_max > sum:
|
||||
window_max = sum
|
||||
window_min = sum - min_width
|
||||
|
||||
if window_min < 0:
|
||||
window_min = 0
|
||||
window_max = min_width
|
||||
|
||||
value = 0
|
||||
value_weight = 0
|
||||
|
||||
# Get the weighted average of all the samples
|
||||
# that overlap with the window, weighted
|
||||
# by the size of their overlap.
|
||||
for i in range(len(values)):
|
||||
if window_min >= values[i].window_max:
|
||||
continue
|
||||
if window_max <= values[i].window_min:
|
||||
break
|
||||
|
||||
s = max(window_min, values[i].window_min)
|
||||
e = min(window_max, values[i].window_max)
|
||||
w = e - s
|
||||
|
||||
value += values[i].value * w
|
||||
value_weight += w
|
||||
|
||||
return value / value_weight if value_weight != 0 else 0
|
||||
|
||||
img_out = img.copy()
|
||||
|
||||
# Apply the kernel operation over each pixel.
|
||||
for index in np.ndindex(img.shape):
|
||||
img_out[index] = weighted_histogram_filter_single(index)
|
||||
|
||||
return img_out
|
||||
|
||||
|
||||
def smoothstep(x):
|
||||
"""
|
||||
The smoothstep function, input should be clamped to 0-1 range.
|
||||
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
||||
"""
|
||||
return x * x * (3 - 2 * x)
|
||||
|
||||
|
||||
def smootherstep(x):
|
||||
"""
|
||||
The smootherstep function, input should be clamped to 0-1 range.
|
||||
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
||||
"""
|
||||
return x * x * x * (x * (6 * x - 15) + 10)
|
||||
|
||||
|
||||
def get_gaussian_kernel(stddev_radius=1.0, max_radius=2):
|
||||
"""
|
||||
Creates a Gaussian kernel with thresholded edges.
|
||||
|
||||
Args:
|
||||
stddev_radius (float):
|
||||
Standard deviation of the gaussian kernel, in pixels.
|
||||
max_radius (int):
|
||||
The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2.
|
||||
The kernel is thresholded so that any values one pixel beyond this radius
|
||||
is weighted at 0.
|
||||
|
||||
Returns:
|
||||
(nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2))
|
||||
"""
|
||||
|
||||
# Evaluates a 0-1 normalized gaussian function for a given square distance from the mean.
|
||||
def gaussian(sqr_mag):
|
||||
return math.exp(-sqr_mag / (stddev_radius * stddev_radius))
|
||||
|
||||
# Helper function for converting a tuple to an array.
|
||||
def vec(x):
|
||||
return np.array(x)
|
||||
|
||||
"""
|
||||
Since a gaussian is unbounded, we need to limit ourselves
|
||||
to a finite range.
|
||||
We taper the ends off at the end of that range so they equal zero
|
||||
while preserving the maximum value of 1 at the mean.
|
||||
"""
|
||||
zero_radius = max_radius + 1.0
|
||||
gauss_zero = gaussian(zero_radius * zero_radius)
|
||||
gauss_kernel_scale = 1 / (1 - gauss_zero)
|
||||
|
||||
def gaussian_kernel_func(coordinate):
|
||||
x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0
|
||||
x = gaussian(x)
|
||||
x -= gauss_zero
|
||||
x *= gauss_kernel_scale
|
||||
x = max(0.0, x)
|
||||
return x
|
||||
|
||||
size = max_radius * 2 + 1
|
||||
kernel_center = max_radius
|
||||
kernel = np.zeros((size, size))
|
||||
|
||||
for index in np.ndindex(kernel.shape):
|
||||
kernel[index] = gaussian_kernel_func(vec(index) - kernel_center)
|
||||
|
||||
return kernel, kernel_center
|
||||
|
||||
|
||||
# ------------------- Constants -------------------
|
||||
|
||||
|
||||
default = SoftInpaintingSettings(1, 0.5, 4, 0, 0.5, 2)
|
||||
|
||||
enabled_ui_label = "Soft inpainting"
|
||||
enabled_gen_param_label = "Soft inpainting enabled"
|
||||
enabled_el_id = "soft_inpainting_enabled"
|
||||
|
||||
ui_labels = SoftInpaintingSettings(
|
||||
"Schedule bias",
|
||||
"Preservation strength",
|
||||
"Transition contrast boost",
|
||||
"Mask influence",
|
||||
"Difference threshold",
|
||||
"Difference contrast")
|
||||
|
||||
ui_info = SoftInpaintingSettings(
|
||||
"Shifts when preservation of original content occurs during denoising.",
|
||||
"How strongly partially masked content should be preserved.",
|
||||
"Amplifies the contrast that may be lost in partially masked regions.",
|
||||
"How strongly the original mask should bias the difference threshold.",
|
||||
"How much an image region can change before the original pixels are not blended in anymore.",
|
||||
"How sharp the transition should be between blended and not blended.")
|
||||
|
||||
gen_param_labels = SoftInpaintingSettings(
|
||||
"Soft inpainting schedule bias",
|
||||
"Soft inpainting preservation strength",
|
||||
"Soft inpainting transition contrast boost",
|
||||
"Soft inpainting mask influence",
|
||||
"Soft inpainting difference threshold",
|
||||
"Soft inpainting difference contrast")
|
||||
|
||||
el_ids = SoftInpaintingSettings(
|
||||
"mask_blend_power",
|
||||
"mask_blend_scale",
|
||||
"inpaint_detail_preservation",
|
||||
"composite_mask_influence",
|
||||
"composite_difference_threshold",
|
||||
"composite_difference_contrast")
|
||||
|
||||
|
||||
# ------------------- Script -------------------
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
def __init__(self):
|
||||
self.section = "inpaint"
|
||||
self.masks_for_overlay = None
|
||||
self.overlay_images = None
|
||||
|
||||
def title(self):
|
||||
return "Soft Inpainting"
|
||||
|
||||
def show(self, is_img2img):
|
||||
return scripts.AlwaysVisible if is_img2img else False
|
||||
|
||||
def ui(self, is_img2img):
|
||||
if not is_img2img:
|
||||
return
|
||||
|
||||
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
"""
|
||||
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
|
||||
**High _Mask blur_** values are recommended!
|
||||
""")
|
||||
|
||||
power = \
|
||||
gr.Slider(label=ui_labels.mask_blend_power,
|
||||
info=ui_info.mask_blend_power,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.1,
|
||||
value=default.mask_blend_power,
|
||||
elem_id=el_ids.mask_blend_power)
|
||||
scale = \
|
||||
gr.Slider(label=ui_labels.mask_blend_scale,
|
||||
info=ui_info.mask_blend_scale,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.05,
|
||||
value=default.mask_blend_scale,
|
||||
elem_id=el_ids.mask_blend_scale)
|
||||
detail = \
|
||||
gr.Slider(label=ui_labels.inpaint_detail_preservation,
|
||||
info=ui_info.inpaint_detail_preservation,
|
||||
minimum=1,
|
||||
maximum=32,
|
||||
step=0.5,
|
||||
value=default.inpaint_detail_preservation,
|
||||
elem_id=el_ids.inpaint_detail_preservation)
|
||||
|
||||
gr.Markdown(
|
||||
"""
|
||||
### Pixel Composite Settings
|
||||
""")
|
||||
|
||||
mask_inf = \
|
||||
gr.Slider(label=ui_labels.composite_mask_influence,
|
||||
info=ui_info.composite_mask_influence,
|
||||
minimum=0,
|
||||
maximum=1,
|
||||
step=0.05,
|
||||
value=default.composite_mask_influence,
|
||||
elem_id=el_ids.composite_mask_influence)
|
||||
|
||||
dif_thresh = \
|
||||
gr.Slider(label=ui_labels.composite_difference_threshold,
|
||||
info=ui_info.composite_difference_threshold,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.25,
|
||||
value=default.composite_difference_threshold,
|
||||
elem_id=el_ids.composite_difference_threshold)
|
||||
|
||||
dif_contr = \
|
||||
gr.Slider(label=ui_labels.composite_difference_contrast,
|
||||
info=ui_info.composite_difference_contrast,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.25,
|
||||
value=default.composite_difference_contrast,
|
||||
elem_id=el_ids.composite_difference_contrast)
|
||||
|
||||
with gr.Accordion("Help", open=False):
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_power}
|
||||
|
||||
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
|
||||
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
|
||||
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
|
||||
|
||||
- **Below 1**: Stronger preservation near the end (with low sigma)
|
||||
- **1**: Balanced (proportional to sigma)
|
||||
- **Above 1**: Stronger preservation in the beginning (with high sigma)
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_scale}
|
||||
|
||||
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
|
||||
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
|
||||
|
||||
- **Low values**: Favors generated content.
|
||||
- **High values**: Favors original content.
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.inpaint_detail_preservation}
|
||||
|
||||
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
|
||||
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
|
||||
This can prevent the loss of contrast that occurs with linear interpolation.
|
||||
|
||||
- **Low values**: Softer blending, details may fade.
|
||||
- **High values**: Stronger contrast, may over-saturate colors.
|
||||
""")
|
||||
|
||||
gr.Markdown(
|
||||
"""
|
||||
## Pixel Composite Settings
|
||||
|
||||
Masks are generated based on how much a part of the image changed after denoising.
|
||||
These masks are used to blend the original and final images together.
|
||||
If the difference is low, the original pixels are used instead of the pixels returned by the inpainting process.
|
||||
""")
|
||||
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.composite_mask_influence}
|
||||
|
||||
This parameter controls how much the mask should bias this sensitivity to difference.
|
||||
|
||||
- **0**: Ignore the mask, only consider differences in image content.
|
||||
- **1**: Follow the mask closely despite image content changes.
|
||||
""")
|
||||
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.composite_difference_threshold}
|
||||
|
||||
This value represents the difference at which the original pixels will have less than 50% opacity.
|
||||
|
||||
- **Low values**: Two images patches must be almost the same in order to retain original pixels.
|
||||
- **High values**: Two images patches can be very different and still retain original pixels.
|
||||
""")
|
||||
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.composite_difference_contrast}
|
||||
|
||||
This value represents the contrast between the opacity of the original and inpainted content.
|
||||
|
||||
- **Low values**: The blend will be more gradual and have longer transitions, but may cause ghosting.
|
||||
- **High values**: Ghosting will be less common, but transitions may be very sudden.
|
||||
""")
|
||||
|
||||
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label),
|
||||
(power, gen_param_labels.mask_blend_power),
|
||||
(scale, gen_param_labels.mask_blend_scale),
|
||||
(detail, gen_param_labels.inpaint_detail_preservation),
|
||||
(mask_inf, gen_param_labels.composite_mask_influence),
|
||||
(dif_thresh, gen_param_labels.composite_difference_threshold),
|
||||
(dif_contr, gen_param_labels.composite_difference_contrast)]
|
||||
|
||||
self.paste_field_names = []
|
||||
for _, field_name in self.infotext_fields:
|
||||
self.paste_field_names.append(field_name)
|
||||
|
||||
return [soft_inpainting_enabled,
|
||||
power,
|
||||
scale,
|
||||
detail,
|
||||
mask_inf,
|
||||
dif_thresh,
|
||||
dif_contr]
|
||||
|
||||
def process(self, p, enabled, power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
if not processing_uses_inpainting(p):
|
||||
return
|
||||
|
||||
# Shut off the rounding it normally does.
|
||||
p.mask_round = False
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
||||
|
||||
# p.extra_generation_params["Mask rounding"] = False
|
||||
settings.add_generation_params(p.extra_generation_params)
|
||||
|
||||
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation, mask_inf,
|
||||
dif_thresh, dif_contr):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
if not processing_uses_inpainting(p):
|
||||
return
|
||||
|
||||
if mba.is_final_blend:
|
||||
mba.blended_latent = mba.current_latent
|
||||
return
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
||||
|
||||
# todo: Why is sigma 2D? Both values are the same.
|
||||
mba.blended_latent = latent_blend(settings,
|
||||
mba.init_latent,
|
||||
mba.current_latent,
|
||||
get_modified_nmask(settings, mba.nmask, mba.sigma[0]))
|
||||
|
||||
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation, mask_inf,
|
||||
dif_thresh, dif_contr):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
if not processing_uses_inpainting(p):
|
||||
return
|
||||
|
||||
nmask = getattr(p, "nmask", None)
|
||||
if nmask is None:
|
||||
return
|
||||
|
||||
from modules import images
|
||||
from modules.shared import opts
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
||||
|
||||
# since the original code puts holes in the existing overlay images,
|
||||
# we have to rebuild them.
|
||||
self.overlay_images = []
|
||||
for img in p.init_images:
|
||||
|
||||
image = images.flatten(img, opts.img2img_background_color)
|
||||
|
||||
if p.paste_to is None and p.resize_mode != 3:
|
||||
image = images.resize_image(p.resize_mode, image, p.width, p.height)
|
||||
|
||||
self.overlay_images.append(image.convert('RGBA'))
|
||||
|
||||
if len(p.init_images) == 1:
|
||||
self.overlay_images = self.overlay_images * p.batch_size
|
||||
|
||||
if getattr(ps.samples, 'already_decoded', False):
|
||||
self.masks_for_overlay = apply_masks(settings=settings,
|
||||
nmask=nmask,
|
||||
overlay_images=self.overlay_images,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
else:
|
||||
self.masks_for_overlay = apply_adaptive_masks(settings=settings,
|
||||
nmask=nmask,
|
||||
latent_orig=p.init_latent,
|
||||
latent_processed=ps.samples,
|
||||
overlay_images=self.overlay_images,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale,
|
||||
detail_preservation, mask_inf, dif_thresh, dif_contr):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
if not processing_uses_inpainting(p):
|
||||
return
|
||||
|
||||
if self.masks_for_overlay is None:
|
||||
return
|
||||
|
||||
if self.overlay_images is None:
|
||||
return
|
||||
|
||||
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index]
|
||||
ppmo.overlay_image = self.overlay_images[ppmo.index]
|
Loading…
Reference in New Issue