support inference with LyCORIS GLora networks

This commit is contained in:
v0xie 2023-10-11 21:26:58 -07:00
parent 7d60076b8b
commit 906d1179e9
2 changed files with 35 additions and 0 deletions

View File

@ -0,0 +1,33 @@
import network
class ModuleTypeGLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["a1.weight", "a2.weight", "alpha", "b1.weight", "b2.weight"]):
return NetworkModuleGLora(net, weights)
return None
# adapted from https://github.com/KohakuBlueleaf/LyCORIS
class NetworkModuleGLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.w1a = weights.w["a1.weight"]
self.w1b = weights.w["b1.weight"]
self.w2a = weights.w["a2.weight"]
self.w2b = weights.w["b2.weight"]
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w1a.size(0), w1b.size(1)]
updown = ((w2b @ w1b) + ((orig_weight @ w2a) @ w1a))
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -5,6 +5,7 @@ import re
import lora_patches import lora_patches
import network import network
import network_lora import network_lora
import network_glora
import network_hada import network_hada
import network_ia3 import network_ia3
import network_lokr import network_lokr
@ -23,6 +24,7 @@ module_types = [
network_lokr.ModuleTypeLokr(), network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(), network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(), network_norm.ModuleTypeNorm(),
network_glora.ModuleTypeGLora(),
] ]