Merge pull request #14871 from v0xie/boft
Support inference with LyCORIS BOFT networks
This commit is contained in:
parent
c7808825b1
commit
92ab0ef7d6
|
@ -22,6 +22,8 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
self.org_module: list[torch.Module] = [self.sd_module]
|
self.org_module: list[torch.Module] = [self.sd_module]
|
||||||
|
|
||||||
self.scale = 1.0
|
self.scale = 1.0
|
||||||
|
self.is_kohya = False
|
||||||
|
self.is_boft = False
|
||||||
|
|
||||||
# kohya-ss
|
# kohya-ss
|
||||||
if "oft_blocks" in weights.w.keys():
|
if "oft_blocks" in weights.w.keys():
|
||||||
|
@ -29,13 +31,19 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
|
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
|
||||||
self.alpha = weights.w["alpha"] # alpha is constraint
|
self.alpha = weights.w["alpha"] # alpha is constraint
|
||||||
self.dim = self.oft_blocks.shape[0] # lora dim
|
self.dim = self.oft_blocks.shape[0] # lora dim
|
||||||
# LyCORIS
|
# LyCORIS OFT
|
||||||
elif "oft_diag" in weights.w.keys():
|
elif "oft_diag" in weights.w.keys():
|
||||||
self.is_kohya = False
|
|
||||||
self.oft_blocks = weights.w["oft_diag"]
|
self.oft_blocks = weights.w["oft_diag"]
|
||||||
# self.alpha is unused
|
# self.alpha is unused
|
||||||
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
||||||
|
|
||||||
|
# LyCORIS BOFT
|
||||||
|
if weights.w["oft_diag"].dim() == 4:
|
||||||
|
self.is_boft = True
|
||||||
|
self.rescale = weights.w.get('rescale', None)
|
||||||
|
if self.rescale is not None:
|
||||||
|
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
|
||||||
|
|
||||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
||||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
|
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
|
||||||
|
@ -51,6 +59,13 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
self.constraint = self.alpha * self.out_dim
|
self.constraint = self.alpha * self.out_dim
|
||||||
self.num_blocks = self.dim
|
self.num_blocks = self.dim
|
||||||
self.block_size = self.out_dim // self.dim
|
self.block_size = self.out_dim // self.dim
|
||||||
|
elif self.is_boft:
|
||||||
|
self.constraint = None
|
||||||
|
self.boft_m = weights.w["oft_diag"].shape[0]
|
||||||
|
self.block_num = weights.w["oft_diag"].shape[1]
|
||||||
|
self.block_size = weights.w["oft_diag"].shape[2]
|
||||||
|
self.boft_b = self.block_size
|
||||||
|
#self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim)
|
||||||
else:
|
else:
|
||||||
self.constraint = None
|
self.constraint = None
|
||||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||||
|
@ -68,6 +83,7 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
|
|
||||||
R = oft_blocks.to(orig_weight.device)
|
R = oft_blocks.to(orig_weight.device)
|
||||||
|
|
||||||
|
if not self.is_boft:
|
||||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||||
merged_weight = torch.einsum(
|
merged_weight = torch.einsum(
|
||||||
|
@ -76,6 +92,28 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
merged_weight
|
merged_weight
|
||||||
)
|
)
|
||||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||||
|
else:
|
||||||
|
# TODO: determine correct value for scale
|
||||||
|
scale = 1.0
|
||||||
|
m = self.boft_m
|
||||||
|
b = self.boft_b
|
||||||
|
r_b = b // 2
|
||||||
|
inp = orig_weight
|
||||||
|
for i in range(m):
|
||||||
|
bi = R[i] # b_num, b_size, b_size
|
||||||
|
if i == 0:
|
||||||
|
# Apply multiplier/scale and rescale into first weight
|
||||||
|
bi = bi * scale + (1 - scale) * eye
|
||||||
|
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
|
||||||
|
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
|
||||||
|
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
|
||||||
|
inp = rearrange(inp, "d b ... -> (d b) ...")
|
||||||
|
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
|
||||||
|
merged_weight = inp
|
||||||
|
|
||||||
|
# Rescale mechanism
|
||||||
|
if self.rescale is not None:
|
||||||
|
merged_weight = self.rescale.to(merged_weight) * merged_weight
|
||||||
|
|
||||||
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
|
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
|
||||||
output_shape = orig_weight.shape
|
output_shape = orig_weight.shape
|
||||||
|
|
Loading…
Reference in New Issue