diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index d168b938f..eee52e7d7 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -57,7 +57,7 @@ def set_samplers(): global samplers, samplers_for_img2img hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive']) + hidden_img2img = set(opts.hide_samplers + ['PLMS']) samplers = [x for x in all_samplers if x.name not in hidden] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] @@ -365,16 +365,27 @@ class KDiffusionSampler: else: sigmas = self.model_wrap.get_sigmas(steps) - noise = noise * sigmas[steps - t_enc - 1] - xi = x + noise - - extra_params_kwargs = self.initialize(p) - sigma_sched = sigmas[steps - t_enc - 1:] + print('check values same', sigmas[steps - t_enc - 1] , sigma_sched[0], sigmas[steps - t_enc - 1] - sigma_sched[0]) + xi = x + noise * sigma_sched[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + ## last sigma is zero which is allowed by DPM Fast & Adaptive so taking value before last + extra_params_kwargs['sigma_min'] = sigma_sched[-2] + if 'sigma_max' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_max'] = sigma_sched[0] + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = len(sigma_sched) - 1 + if 'sigma_sched' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_sched'] = sigma_sched + if 'sigmas' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigmas'] = sigma_sched self.model_wrap_cfg.init_latent = x - return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): steps = steps or p.steps