From 9324cdaa3199d65c182858785dd1eca42b192b8e Mon Sep 17 00:00:00 2001 From: MalumaDev Date: Sun, 16 Oct 2022 17:53:56 +0200 Subject: [PATCH] ui fix, re organization of the code --- modules/aesthetic_clip.py | 154 +++++++++++++++++++++++++-- modules/img2img.py | 14 ++- modules/processing.py | 29 ++--- modules/sd_hijack.py | 102 +----------------- modules/sd_models.py | 5 +- modules/shared.py | 14 ++- modules/textual_inversion/dataset.py | 2 +- modules/txt2img.py | 18 ++-- modules/ui.py | 50 +++++---- 9 files changed, 232 insertions(+), 156 deletions(-) diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py index ccb35c73f..34efa931b 100644 --- a/modules/aesthetic_clip.py +++ b/modules/aesthetic_clip.py @@ -1,3 +1,4 @@ +import copy import itertools import os from pathlib import Path @@ -7,11 +8,12 @@ import gc import gradio as gr import torch from PIL import Image -from modules import shared -from modules.shared import device -from transformers import CLIPModel, CLIPProcessor +from torch import optim -from tqdm.auto import tqdm +from modules import shared +from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer +from tqdm.auto import tqdm, trange +from modules.shared import opts, device def get_all_images_in_folder(folder): @@ -37,12 +39,39 @@ def iter_to_batched(iterable, n=1): yield chunk +def create_ui(): + with gr.Group(): + with gr.Accordion("Open for Clip Aesthetic!", open=False): + with gr.Row(): + aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", + value=0.9) + aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) + + with gr.Row(): + aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', + placeholder="Aesthetic learning rate", value="0.0001") + aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) + aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()), + label="Aesthetic imgs embedding", + value="None") + + with gr.Row(): + aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', + placeholder="This text is used to rotate the feature space of the imgs embs", + value="") + aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01, + value=0.1) + aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) + + return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative + + def generate_imgs_embd(name, folder, batch_size): # clipModel = CLIPModel.from_pretrained( # shared.sd_model.cond_stage_model.clipModel.name_or_path # ) - model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path).to(device) - processor = CLIPProcessor.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path) + model = shared.clip_model.to(device) + processor = CLIPProcessor.from_pretrained(model.name_or_path) with torch.no_grad(): embs = [] @@ -63,7 +92,6 @@ def generate_imgs_embd(name, folder, batch_size): torch.save(embs, path) model = model.cpu() - del model del processor del embs gc.collect() @@ -74,4 +102,114 @@ def generate_imgs_embd(name, folder, batch_size): """ shared.update_aesthetic_embeddings() return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding", - value="None"), res, "" + value="None"), \ + gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), + label="Imgs embedding", + value="None"), res, "" + + +def slerp(low, high, val): + low_norm = low / torch.norm(low, dim=1, keepdim=True) + high_norm = high / torch.norm(high, dim=1, keepdim=True) + omega = torch.acos((low_norm * high_norm).sum(1)) + so = torch.sin(omega) + res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high + return res + + +class AestheticCLIP: + def __init__(self): + self.skip = False + self.aesthetic_steps = 0 + self.aesthetic_weight = 0 + self.aesthetic_lr = 0 + self.slerp = False + self.aesthetic_text_negative = "" + self.aesthetic_slerp_angle = 0 + self.aesthetic_imgs_text = "" + + self.image_embs_name = None + self.image_embs = None + self.load_image_embs(None) + + def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None, + aesthetic_slerp=True, aesthetic_imgs_text="", + aesthetic_slerp_angle=0.15, + aesthetic_text_negative=False): + self.aesthetic_imgs_text = aesthetic_imgs_text + self.aesthetic_slerp_angle = aesthetic_slerp_angle + self.aesthetic_text_negative = aesthetic_text_negative + self.slerp = aesthetic_slerp + self.aesthetic_lr = aesthetic_lr + self.aesthetic_weight = aesthetic_weight + self.aesthetic_steps = aesthetic_steps + self.load_image_embs(image_embs_name) + + def set_skip(self, skip): + self.skip = skip + + def load_image_embs(self, image_embs_name): + if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None": + image_embs_name = None + self.image_embs_name = None + if image_embs_name is not None and self.image_embs_name != image_embs_name: + self.image_embs_name = image_embs_name + self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device) + self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True) + self.image_embs.requires_grad_(False) + + def __call__(self, z, remade_batch_tokens): + if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None: + tokenizer = shared.sd_model.cond_stage_model.tokenizer + if not opts.use_old_emphasis_implementation: + remade_batch_tokens = [ + [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in + remade_batch_tokens] + + tokens = torch.asarray(remade_batch_tokens).to(device) + + model = copy.deepcopy(shared.clip_model).to(device) + model.requires_grad_(True) + if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0: + text_embs_2 = model.get_text_features( + **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device)) + if self.aesthetic_text_negative: + text_embs_2 = self.image_embs - text_embs_2 + text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True) + img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle) + else: + img_embs = self.image_embs + + with torch.enable_grad(): + + # We optimize the model to maximize the similarity + optimizer = optim.Adam( + model.text_model.parameters(), lr=self.aesthetic_lr + ) + + for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"): + text_embs = model.get_text_features(input_ids=tokens) + text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True) + sim = text_embs @ img_embs.T + loss = -sim + optimizer.zero_grad() + loss.mean().backward() + optimizer.step() + + zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) + if opts.CLIP_stop_at_last_layers > 1: + zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers] + zn = model.text_model.final_layer_norm(zn) + else: + zn = zn.last_hidden_state + model.cpu() + del model + gc.collect() + torch.cuda.empty_cache() + zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1) + if self.slerp: + z = slerp(z, zn, self.aesthetic_weight) + else: + z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight + + return z diff --git a/modules/img2img.py b/modules/img2img.py index 241267745..4ed80c4bf 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -56,7 +56,14 @@ def process_batch(p, input_dir, output_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args): +def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, + aesthetic_lr=0, + aesthetic_weight=0, aesthetic_steps=0, + aesthetic_imgs=None, + aesthetic_slerp=False, + aesthetic_imgs_text="", + aesthetic_slerp_angle=0.15, + aesthetic_text_negative=False, *args): is_inpaint = mode == 1 is_batch = mode == 2 @@ -109,6 +116,11 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro inpainting_mask_invert=inpainting_mask_invert, ) + shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), + aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, + aesthetic_slerp_angle, + aesthetic_text_negative) + if shared.cmd_opts.enable_console_prompts: print(f"\nimg2img: {prompt}", file=shared.progress_print_out) diff --git a/modules/processing.py b/modules/processing.py index 1db26c3ea..685f9fcd8 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -146,7 +146,8 @@ class Processed: self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0] self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0] self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1 - self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 + self.subseed = int( + self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 self.all_prompts = all_prompts or [self.prompt] self.all_seeds = all_seeds or [self.seed] @@ -332,16 +333,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() -def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, - aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", - aesthetic_slerp_angle=0.15, - aesthetic_text_negative=False) -> Processed: +def process_images(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" - aesthetic_lr = float(aesthetic_lr) - aesthetic_weight = float(aesthetic_weight) - aesthetic_steps = int(aesthetic_steps) - if type(p.prompt) == list: assert (len(p.prompt) > 0) else: @@ -417,16 +411,10 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh # uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) # c = p.sd_model.get_learned_conditioning(prompts) with devices.autocast(): - if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"): - shared.sd_model.cond_stage_model.set_aesthetic_params() + shared.aesthetic_clip.set_skip(True) uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps) - if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"): - shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight, - aesthetic_steps, aesthetic_imgs, - aesthetic_slerp, aesthetic_imgs_text, - aesthetic_slerp_angle, - aesthetic_text_negative) + shared.aesthetic_clip.set_skip(False) c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps) if len(model_hijack.comments) > 0: @@ -582,7 +570,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f - def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) @@ -600,10 +587,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) - samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] + samples = samples[:, :, self.truncate_y // 2:samples.shape[2] - self.truncate_y // 2, + self.truncate_x // 2:samples.shape[3] - self.truncate_x // 2] if opts.use_scale_latent_for_hires_fix: - samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), + mode="bilinear") else: decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 5d0590afc..227e76705 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -29,8 +29,8 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu - - if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): + if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and ( + 6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward @@ -118,33 +118,14 @@ class StableDiffusionModelHijack: return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count) -def slerp(low, high, val): - low_norm = low / torch.norm(low, dim=1, keepdim=True) - high_norm = high / torch.norm(high, dim=1, keepdim=True) - omega = torch.acos((low_norm * high_norm).sum(1)) - so = torch.sin(omega) - res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high - return res - - class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def __init__(self, wrapped, hijack): super().__init__() self.wrapped = wrapped - self.clipModel = CLIPModel.from_pretrained( - self.wrapped.transformer.name_or_path - ) - del self.clipModel.vision_model - self.tokenizer = CLIPTokenizer.from_pretrained(self.wrapped.transformer.name_or_path) - self.hijack: StableDiffusionModelHijack = hijack - self.tokenizer = wrapped.tokenizer - # self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval() - self.image_embs_name = None - self.image_embs = None - self.load_image_embs(None) self.token_mults = {} - + self.hijack: StableDiffusionModelHijack = hijack + self.tokenizer = wrapped.tokenizer self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0] tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if @@ -164,28 +145,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): if mult != 1.0: self.token_mults[ident] = mult - def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None, - aesthetic_slerp=True, aesthetic_imgs_text="", - aesthetic_slerp_angle=0.15, - aesthetic_text_negative=False): - self.aesthetic_imgs_text = aesthetic_imgs_text - self.aesthetic_slerp_angle = aesthetic_slerp_angle - self.aesthetic_text_negative = aesthetic_text_negative - self.slerp = aesthetic_slerp - self.aesthetic_lr = aesthetic_lr - self.aesthetic_weight = aesthetic_weight - self.aesthetic_steps = aesthetic_steps - self.load_image_embs(image_embs_name) - - def load_image_embs(self, image_embs_name): - if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None": - image_embs_name = None - if image_embs_name is not None and self.image_embs_name != image_embs_name: - self.image_embs_name = image_embs_name - self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device) - self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True) - self.image_embs.requires_grad_(False) - def tokenize_line(self, line, used_custom_terms, hijack_comments): id_end = self.wrapped.tokenizer.eos_token_id @@ -391,58 +350,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): z1 = self.process_tokens(tokens, multipliers) z = z1 if z is None else torch.cat((z, z1), axis=-2) - - if self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None: - if not opts.use_old_emphasis_implementation: - remade_batch_tokens = [ - [self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in - remade_batch_tokens] - - tokens = torch.asarray(remade_batch_tokens).to(device) - - model = copy.deepcopy(self.clipModel).to(device) - model.requires_grad_(True) - if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0: - text_embs_2 = model.get_text_features( - **self.tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device)) - if self.aesthetic_text_negative: - text_embs_2 = self.image_embs - text_embs_2 - text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True) - img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle) - else: - img_embs = self.image_embs - - with torch.enable_grad(): - - # We optimize the model to maximize the similarity - optimizer = optim.Adam( - model.text_model.parameters(), lr=self.aesthetic_lr - ) - - for i in trange(self.aesthetic_steps, desc="Aesthetic optimization"): - text_embs = model.get_text_features(input_ids=tokens) - text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True) - sim = text_embs @ img_embs.T - loss = -sim - optimizer.zero_grad() - loss.mean().backward() - optimizer.step() - - zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) - if opts.CLIP_stop_at_last_layers > 1: - zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers] - zn = model.text_model.final_layer_norm(zn) - else: - zn = zn.last_hidden_state - model.cpu() - del model - - zn = torch.concat([zn for i in range(z.shape[1] // 77)], 1) - if self.slerp: - z = slerp(z, zn, self.aesthetic_weight) - else: - z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight - + z = shared.aesthetic_clip(z, remade_batch_tokens) remade_batch_tokens = rem_tokens batch_multipliers = rem_multipliers i += 1 diff --git a/modules/sd_models.py b/modules/sd_models.py index 3aa21ec14..8e4ee435a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -20,7 +20,7 @@ checkpoints_loaded = collections.OrderedDict() try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. - from transformers import logging + from transformers import logging, CLIPModel logging.set_verbosity_error() except Exception: @@ -196,6 +196,9 @@ def load_model(): sd_hijack.model_hijack.hijack(sd_model) + if shared.clip_model is None or shared.clip_model.transformer.name_or_path != sd_model.cond_stage_model.wrapped.transformer.name_or_path: + shared.clip_model = CLIPModel.from_pretrained(sd_model.cond_stage_model.wrapped.transformer.name_or_path) + sd_model.eval() print(f"Model loaded.") diff --git a/modules/shared.py b/modules/shared.py index e2c98b2dd..e19ca7797 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -3,6 +3,7 @@ import datetime import json import os import sys +from collections import OrderedDict import gradio as gr import tqdm @@ -94,15 +95,15 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None -aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in - os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")} -aesthetic_embeddings = aesthetic_embeddings | {"None": None} +aesthetic_embeddings = {} def update_aesthetic_embeddings(): global aesthetic_embeddings aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")} - aesthetic_embeddings = aesthetic_embeddings | {"None": None} + aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings) + +update_aesthetic_embeddings() def reload_hypernetworks(): global hypernetworks @@ -381,6 +382,11 @@ sd_upscalers = [] sd_model = None +clip_model = None + +from modules.aesthetic_clip import AestheticCLIP +aesthetic_clip = AestheticCLIP() + progress_print_out = sys.stdout diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 68ceffe3f..23bb4b6a6 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -49,7 +49,7 @@ class PersonalizedBase(Dataset): print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): try: - image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.Resampling.BICUBIC) + image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC) except Exception: continue diff --git a/modules/txt2img.py b/modules/txt2img.py index 8f394d05b..6cbc50fca 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,12 +1,17 @@ import modules.scripts -from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ + StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, cmd_opts import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int,aesthetic_lr=0, +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, + restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, + subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, + height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, + firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, @@ -41,15 +46,17 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: firstphase_height=firstphase_height if enable_hr else None, ) + shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), + aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, + aesthetic_text_negative) + if cmd_opts.enable_console_prompts: print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) processed = modules.scripts.scripts_txt2img.run(p, *args) if processed is None: - processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp,aesthetic_imgs_text, - aesthetic_slerp_angle, - aesthetic_text_negative) + processed = process_images(p) shared.total_tqdm.clear() @@ -61,4 +68,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: processed.images = [] return processed.images, generation_info_js, plaintext_to_html(processed.info) - diff --git a/modules/ui.py b/modules/ui.py index 4069f0d20..0e5d73f00 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -43,7 +43,7 @@ from modules.images import save_image import modules.textual_inversion.ui import modules.hypernetworks.ui -import modules.aesthetic_clip +import modules.aesthetic_clip as aesthetic_clip import modules.images_history as img_his @@ -593,23 +593,25 @@ def create_ui(wrap_gradio_gpu_call): width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) - with gr.Group(): - with gr.Accordion("Open for Clip Aesthetic!",open=False): - with gr.Row(): - aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9) - aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) + # with gr.Group(): + # with gr.Accordion("Open for Clip Aesthetic!",open=False): + # with gr.Row(): + # aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9) + # aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) + # + # with gr.Row(): + # aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001") + # aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) + # aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), + # label="Aesthetic imgs embedding", + # value="None") + # + # with gr.Row(): + # aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="") + # aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1) + # aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) - with gr.Row(): - aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001") - aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) - aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), - label="Aesthetic imgs embedding", - value="None") - - with gr.Row(): - aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="") - aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1) - aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) + aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui() with gr.Row(): @@ -840,6 +842,9 @@ def create_ui(wrap_gradio_gpu_call): width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) + aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui() + + with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) @@ -944,6 +949,14 @@ def create_ui(wrap_gradio_gpu_call): inpainting_mask_invert, img2img_batch_input_dir, img2img_batch_output_dir, + aesthetic_lr_im, + aesthetic_weight_im, + aesthetic_steps_im, + aesthetic_imgs_im, + aesthetic_slerp_im, + aesthetic_imgs_text_im, + aesthetic_slerp_angle_im, + aesthetic_text_negative_im, ] + custom_inputs, outputs=[ img2img_gallery, @@ -1283,7 +1296,7 @@ def create_ui(wrap_gradio_gpu_call): ) create_embedding_ae.click( - fn=modules.aesthetic_clip.generate_imgs_embd, + fn=aesthetic_clip.generate_imgs_embd, inputs=[ new_embedding_name_ae, process_src_ae, @@ -1291,6 +1304,7 @@ def create_ui(wrap_gradio_gpu_call): ], outputs=[ aesthetic_imgs, + aesthetic_imgs_im, ti_output, ti_outcome, ]