Merge pull request #15824 from drhead/patch-4
[Performance] LDM optimization patches
This commit is contained in:
commit
93b53dc116
|
@ -1,5 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
from packaging import version
|
from packaging import version
|
||||||
|
from einops import repeat
|
||||||
|
import math
|
||||||
|
|
||||||
from modules import devices
|
from modules import devices
|
||||||
from modules.sd_hijack_utils import CondFunc
|
from modules.sd_hijack_utils import CondFunc
|
||||||
|
@ -52,6 +54,54 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
# Monkey patch to create timestep embed tensor on device, avoiding a block.
|
||||||
|
def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
|
||||||
|
"""
|
||||||
|
Create sinusoidal timestep embeddings.
|
||||||
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||||
|
These may be fractional.
|
||||||
|
:param dim: the dimension of the output.
|
||||||
|
:param max_period: controls the minimum frequency of the embeddings.
|
||||||
|
:return: an [N x dim] Tensor of positional embeddings.
|
||||||
|
"""
|
||||||
|
if not repeat_only:
|
||||||
|
half = dim // 2
|
||||||
|
freqs = torch.exp(
|
||||||
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
||||||
|
)
|
||||||
|
args = timesteps[:, None].float() * freqs[None]
|
||||||
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||||
|
if dim % 2:
|
||||||
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||||
|
else:
|
||||||
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||||
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
|
# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
|
||||||
|
# Prevents a lot of unnecessary aten::copy_ calls
|
||||||
|
def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
|
||||||
|
# note: if no context is given, cross-attention defaults to self-attention
|
||||||
|
if not isinstance(context, list):
|
||||||
|
context = [context]
|
||||||
|
b, c, h, w = x.shape
|
||||||
|
x_in = x
|
||||||
|
x = self.norm(x)
|
||||||
|
if not self.use_linear:
|
||||||
|
x = self.proj_in(x)
|
||||||
|
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
|
||||||
|
if self.use_linear:
|
||||||
|
x = self.proj_in(x)
|
||||||
|
for i, block in enumerate(self.transformer_blocks):
|
||||||
|
x = block(x, context=context[i])
|
||||||
|
if self.use_linear:
|
||||||
|
x = self.proj_out(x)
|
||||||
|
x = x.view(b, h, w, c).permute(0, 3, 1, 2)
|
||||||
|
if not self.use_linear:
|
||||||
|
x = self.proj_out(x)
|
||||||
|
return x + x_in
|
||||||
|
|
||||||
|
|
||||||
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
torch.nn.GELU.__init__(self, *args, **kwargs)
|
torch.nn.GELU.__init__(self, *args, **kwargs)
|
||||||
|
@ -72,6 +122,10 @@ def hijack_ddpm_edit():
|
||||||
|
|
||||||
|
|
||||||
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
||||||
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
||||||
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
|
||||||
|
CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
|
||||||
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
||||||
|
|
||||||
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
|
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
|
||||||
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
|
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
|
||||||
|
|
Loading…
Reference in New Issue