feat: support LyCORIS BOFT
This commit is contained in:
parent
321b2db067
commit
9588721197
|
@ -1,6 +1,6 @@
|
|||
import torch
|
||||
import network
|
||||
from lyco_helpers import factorization
|
||||
from lyco_helpers import factorization, butterfly_factor
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
|
@ -36,6 +36,12 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||
# self.alpha is unused
|
||||
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
||||
|
||||
self.is_boft = False
|
||||
if "boft" in weights.w.keys():
|
||||
self.is_boft = True
|
||||
self.boft_b = weights.w["boft_b"]
|
||||
self.boft_m = weights.w["boft_m"]
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
|
||||
|
@ -68,14 +74,34 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||
|
||||
R = oft_blocks.to(orig_weight.device)
|
||||
|
||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
merged_weight = torch.einsum(
|
||||
'k n m, k n ... -> k m ...',
|
||||
R,
|
||||
merged_weight
|
||||
)
|
||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||
if not self.is_boft:
|
||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
merged_weight = torch.einsum(
|
||||
'k n m, k n ... -> k m ...',
|
||||
R,
|
||||
merged_weight
|
||||
)
|
||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||
else:
|
||||
scale = 1.0
|
||||
m = self.boft_m.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
|
||||
b = self.boft_b.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
|
||||
r_b = b // 2
|
||||
inp = orig_weight
|
||||
for i in range(m):
|
||||
bi = R[i] # b_num, b_size, b_size
|
||||
if i == 0:
|
||||
# Apply multiplier/scale and rescale into first weight
|
||||
bi = bi * scale + (1 - scale) * eye
|
||||
#if self.rescaled:
|
||||
# bi = bi * self.rescale
|
||||
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
|
||||
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
|
||||
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
|
||||
inp = rearrange(inp, "d b ... -> (d b) ...")
|
||||
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
|
||||
merged_weight = inp
|
||||
|
||||
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
|
||||
output_shape = orig_weight.shape
|
||||
|
|
Loading…
Reference in New Issue