diff --git a/CHANGELOG.md b/CHANGELOG.md
index 295d26c8c..596b1ec45 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,3 +1,8 @@
+## 1.9.4
+
+### Bug Fixes:
+* pin setuptools version to fix the startup error ([#15882](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15882))
+
## 1.9.3
### Bug Fixes:
diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py
index 42b14dc23..18809364b 100644
--- a/extensions-builtin/Lora/networks.py
+++ b/extensions-builtin/Lora/networks.py
@@ -260,6 +260,16 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
loaded_networks.clear()
+ unavailable_networks = []
+ for name in names:
+ if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
+ unavailable_networks.append(name)
+ elif available_network_aliases.get(name) is None:
+ unavailable_networks.append(name)
+
+ if unavailable_networks:
+ update_available_networks_by_names(unavailable_networks)
+
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
@@ -566,22 +576,16 @@ def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
-def list_available_networks():
- available_networks.clear()
- available_network_aliases.clear()
- forbidden_network_aliases.clear()
- available_network_hash_lookup.clear()
- forbidden_network_aliases.update({"none": 1, "Addams": 1})
-
- os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
-
+def process_network_files(names: list[str] | None = None):
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
-
name = os.path.splitext(os.path.basename(filename))[0]
+ # if names is provided, only load networks with names in the list
+ if names and name not in names:
+ continue
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
@@ -597,6 +601,22 @@ def list_available_networks():
available_network_aliases[entry.alias] = entry
+def update_available_networks_by_names(names: list[str]):
+ process_network_files(names)
+
+
+def list_available_networks():
+ available_networks.clear()
+ available_network_aliases.clear()
+ forbidden_network_aliases.clear()
+ available_network_hash_lookup.clear()
+ forbidden_network_aliases.update({"none": 1, "Addams": 1})
+
+ os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
+
+ process_network_files()
+
+
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py
index b627f7dc2..3e34d69dc 100644
--- a/extensions-builtin/Lora/ui_extra_networks_lora.py
+++ b/extensions-builtin/Lora/ui_extra_networks_lora.py
@@ -60,7 +60,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
else:
sd_version = lora_on_disk.sd_version
- if shared.opts.lora_show_all or not enable_filter:
+ if shared.opts.lora_show_all or not enable_filter or not shared.sd_model:
pass
elif sd_version == network.SdVersion.Unknown:
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1
diff --git a/javascript/ui.js b/javascript/ui.js
index e0f5feebd..16faacebb 100644
--- a/javascript/ui.js
+++ b/javascript/ui.js
@@ -337,8 +337,8 @@ onOptionsChanged(function() {
let txt2img_textarea, img2img_textarea = undefined;
function restart_reload() {
+ document.body.style.backgroundColor = "var(--background-fill-primary)";
document.body.innerHTML = '
Reloading...
';
-
var requestPing = function() {
requestGet("./internal/ping", {}, function(data) {
location.reload();
diff --git a/modules/api/api.py b/modules/api/api.py
index f468c3852..d8e54529b 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -438,15 +438,19 @@ class Api:
self.apply_infotext(txt2imgreq, "txt2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
+ sampler, scheduler = sd_samplers.get_sampler_and_scheduler(txt2imgreq.sampler_name or txt2imgreq.sampler_index, txt2imgreq.scheduler)
populate = txt2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
+ "sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not txt2imgreq.save_images,
"do_not_save_grid": not txt2imgreq.save_images,
})
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
+ if not populate.scheduler and scheduler != "Automatic":
+ populate.scheduler = scheduler
+
args = vars(populate)
args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
@@ -502,9 +506,10 @@ class Api:
self.apply_infotext(img2imgreq, "img2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
+ sampler, scheduler = sd_samplers.get_sampler_and_scheduler(img2imgreq.sampler_name or img2imgreq.sampler_index, img2imgreq.scheduler)
populate = img2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
+ "sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not img2imgreq.save_images,
"do_not_save_grid": not img2imgreq.save_images,
"mask": mask,
@@ -512,6 +517,9 @@ class Api:
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
+ if not populate.scheduler and scheduler != "Automatic":
+ populate.scheduler = scheduler
+
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index 016a33d10..58c5e5d5b 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -41,7 +41,7 @@ parser.add_argument("--lowvram", action='store_true', help="enable stable diffus
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="does not do anything")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
-parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
+parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "half", "autocast"], default="autocast")
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
diff --git a/modules/devices.py b/modules/devices.py
index e4f671ac6..7de34ac51 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -114,6 +114,9 @@ errors.run(enable_tf32, "Enabling TF32")
cpu: torch.device = torch.device("cpu")
fp8: bool = False
+# Force fp16 for all models in inference. No casting during inference.
+# This flag is controlled by "--precision half" command line arg.
+force_fp16: bool = False
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
@@ -127,6 +130,8 @@ unet_needs_upcast = False
def cond_cast_unet(input):
+ if force_fp16:
+ return input.to(torch.float16)
return input.to(dtype_unet) if unet_needs_upcast else input
@@ -206,6 +211,11 @@ def autocast(disable=False):
if disable:
return contextlib.nullcontext()
+ if force_fp16:
+ # No casting during inference if force_fp16 is enabled.
+ # All tensor dtype conversion happens before inference.
+ return contextlib.nullcontext()
+
if fp8 and device==cpu:
return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True)
@@ -269,3 +279,17 @@ def first_time_calculation():
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)
+
+
+def force_model_fp16():
+ """
+ ldm and sgm has modules.diffusionmodules.util.GroupNorm32.forward, which
+ force conversion of input to float32. If force_fp16 is enabled, we need to
+ prevent this casting.
+ """
+ assert force_fp16
+ import sgm.modules.diffusionmodules.util as sgm_util
+ import ldm.modules.diffusionmodules.util as ldm_util
+ sgm_util.GroupNorm32 = torch.nn.GroupNorm
+ ldm_util.GroupNorm32 = torch.nn.GroupNorm
+ print("ldm/sgm GroupNorm32 replaced with normal torch.nn.GroupNorm due to `--precision half`.")
diff --git a/modules/images.py b/modules/images.py
index c0ff8a630..1be176cdf 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -653,7 +653,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
# WebP and JPG formats have maximum dimension limits of 16383 and 65535 respectively. switch to PNG which has a much higher limit
if (image.height > 65535 or image.width > 65535) and extension.lower() in ("jpg", "jpeg") or (image.height > 16383 or image.width > 16383) and extension.lower() == "webp":
print('Image dimensions too large; saving as PNG')
- extension = ".png"
+ extension = "png"
if save_to_dirs is None:
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
diff --git a/modules/processing.py b/modules/processing.py
index 76557dd7f..3489efd3b 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -238,11 +238,6 @@ class StableDiffusionProcessing:
self.styles = []
self.sampler_noise_scheduler_override = None
- self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
- self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
- self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
- self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
- self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
@@ -259,6 +254,13 @@ class StableDiffusionProcessing:
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
+ def fill_fields_from_opts(self):
+ self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
+ self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
+ self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
+ self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
+ self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
+
@property
def sd_model(self):
return shared.sd_model
@@ -569,7 +571,7 @@ class Processed:
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
- self.infotexts = infotexts or [info]
+ self.infotexts = infotexts or [info] * len(images_list)
self.version = program_version()
def js(self):
@@ -794,7 +796,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
- "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
@@ -842,6 +843,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
+ # backwards compatibility, fix sampler and scheduler if invalid
+ sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
+
res = process_images_inner(p)
finally:
@@ -890,6 +894,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
+ p.fill_fields_from_opts()
p.setup_prompts()
if isinstance(seed, list):
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 7f9e328d0..0269f1f5b 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -486,7 +486,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
- q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
+ q, k, v = (t.reshape(t.shape[0], t.shape[1], h, -1) for t in (q_in, k_in, v_in))
+
del q_in, k_in, v_in
dtype = q.dtype
@@ -497,7 +498,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
out = out.to(dtype)
- out = rearrange(out, 'b n h d -> b n (h d)', h=h)
+ b, n, h, d = out.shape
+ out = out.reshape(b, n, h * d)
return self.to_out(out)
diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py
index 2101f1a04..b4f03b138 100644
--- a/modules/sd_hijack_unet.py
+++ b/modules/sd_hijack_unet.py
@@ -1,5 +1,7 @@
import torch
from packaging import version
+from einops import repeat
+import math
from modules import devices
from modules.sd_hijack_utils import CondFunc
@@ -36,7 +38,7 @@ th = TorchHijackForUnet()
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
-
+ """Always make sure inputs to unet are in correct dtype."""
if isinstance(cond, dict):
for y in cond.keys():
if isinstance(cond[y], list):
@@ -45,7 +47,59 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast():
- return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
+ result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
+ if devices.unet_needs_upcast:
+ return result.float()
+ else:
+ return result
+
+
+# Monkey patch to create timestep embed tensor on device, avoiding a block.
+def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
+ )
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
+# Prevents a lot of unnecessary aten::copy_ calls
+def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
+ # note: if no context is given, cross-attention defaults to self-attention
+ if not isinstance(context, list):
+ context = [context]
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
+ if self.use_linear:
+ x = self.proj_in(x)
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, context=context[i])
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = x.view(b, h, w, c).permute(0, 3, 1, 2)
+ if not self.use_linear:
+ x = self.proj_out(x)
+ return x + x_in
class GELUHijack(torch.nn.GELU, torch.nn.Module):
@@ -64,12 +118,15 @@ def hijack_ddpm_edit():
if not ddpm_edit_hijack:
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
+ ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
+CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
+CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
+
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
@@ -81,5 +138,17 @@ CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_s
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
-CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
-CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
+CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
+CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
+
+
+def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
+ if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
+ dtype = torch.float32
+ else:
+ dtype = devices.dtype_unet
+ return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
+
+
+CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
+CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py
index 79bf6e468..546f2eda4 100644
--- a/modules/sd_hijack_utils.py
+++ b/modules/sd_hijack_utils.py
@@ -1,7 +1,11 @@
import importlib
+
+always_true_func = lambda *args, **kwargs: True
+
+
class CondFunc:
- def __new__(cls, orig_func, sub_func, cond_func):
+ def __new__(cls, orig_func, sub_func, cond_func=always_true_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
@@ -20,13 +24,13 @@ class CondFunc:
print(f"Warning: Failed to resolve {orig_func} for CondFunc hijack")
pass
self.__init__(orig_func, sub_func, cond_func)
- return lambda *args, **kwargs: self(*args, **kwargs)
- def __init__(self, orig_func, sub_func, cond_func):
- self.__orig_func = orig_func
- self.__sub_func = sub_func
- self.__cond_func = cond_func
- def __call__(self, *args, **kwargs):
- if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
- return self.__sub_func(self.__orig_func, *args, **kwargs)
- else:
- return self.__orig_func(*args, **kwargs)
+ return lambda *args, **kwargs: self(*args, **kwargs)
+ def __init__(self, orig_func, sub_func, cond_func):
+ self.__orig_func = orig_func
+ self.__sub_func = sub_func
+ self.__cond_func = cond_func
+ def __call__(self, *args, **kwargs):
+ if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
+ return self.__sub_func(self.__orig_func, *args, **kwargs)
+ else:
+ return self.__orig_func(*args, **kwargs)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index ff245b7a6..5f53ebb9b 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -403,6 +403,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
model.float()
model.alphas_cumprod_original = model.alphas_cumprod
devices.dtype_unet = torch.float32
+ assert shared.cmd_opts.precision != "half", "Cannot use --precision half with --no-half"
timer.record("apply float()")
else:
vae = model.first_stage_model
@@ -540,7 +541,7 @@ def repair_config(sd_config):
if hasattr(sd_config.model.params, 'unet_config'):
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
- elif shared.cmd_opts.upcast_sampling:
+ elif shared.cmd_opts.upcast_sampling or shared.cmd_opts.precision == "half":
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
@@ -659,10 +660,11 @@ def get_empty_cond(sd_model):
def send_model_to_cpu(m):
- if m.lowvram:
- lowvram.send_everything_to_cpu()
- else:
- m.to(devices.cpu)
+ if m is not None:
+ if m.lowvram:
+ lowvram.send_everything_to_cpu()
+ else:
+ m.to(devices.cpu)
devices.torch_gc()
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 6b7b84b6d..b8abac4a9 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -1,7 +1,7 @@
from __future__ import annotations
import functools
-
+import logging
from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_lcm, shared, sd_samplers_common, sd_schedulers
# imports for functions that previously were here and are used by other modules
@@ -122,4 +122,11 @@ def get_sampler_and_scheduler(sampler_name, scheduler_name):
return sampler.name, found_scheduler.label
+def fix_p_invalid_sampler_and_scheduler(p):
+ i_sampler_name, i_scheduler = p.sampler_name, p.scheduler
+ p.sampler_name, p.scheduler = get_sampler_and_scheduler(p.sampler_name, p.scheduler)
+ if p.sampler_name != i_sampler_name or i_scheduler != p.scheduler:
+ logging.warning(f'Sampler Scheduler autocorrection: "{i_sampler_name}" -> "{p.sampler_name}", "{i_scheduler}" -> "{p.scheduler}"')
+
+
set_samplers()
diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py
index 93581c9ac..f48f58a50 100644
--- a/modules/sd_samplers_cfg_denoiser.py
+++ b/modules/sd_samplers_cfg_denoiser.py
@@ -212,9 +212,16 @@ class CFGDenoiser(torch.nn.Module):
uncond = denoiser_params.text_uncond
skip_uncond = False
- # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
- if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
+ if shared.opts.skip_early_cond != 0. and self.step / self.total_steps <= shared.opts.skip_early_cond:
skip_uncond = True
+ self.p.extra_generation_params["Skip Early CFG"] = shared.opts.skip_early_cond
+ elif (self.step % 2 or shared.opts.s_min_uncond_all) and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
+ skip_uncond = True
+ self.p.extra_generation_params["NGMS"] = s_min_uncond
+ if shared.opts.s_min_uncond_all:
+ self.p.extra_generation_params["NGMS all steps"] = shared.opts.s_min_uncond_all
+
+ if skip_uncond:
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]
diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py
index 75eb3ac03..0c09af8d0 100644
--- a/modules/sd_schedulers.py
+++ b/modules/sd_schedulers.py
@@ -4,6 +4,9 @@ import torch
import k_diffusion
+import numpy as np
+
+from modules import shared
@dataclasses.dataclass
class Scheduler:
@@ -30,6 +33,41 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
+def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device='cpu'):
+ # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
+ def loglinear_interp(t_steps, num_steps):
+ """
+ Performs log-linear interpolation of a given array of decreasing numbers.
+ """
+ xs = np.linspace(0, 1, len(t_steps))
+ ys = np.log(t_steps[::-1])
+
+ new_xs = np.linspace(0, 1, num_steps)
+ new_ys = np.interp(new_xs, xs, ys)
+
+ interped_ys = np.exp(new_ys)[::-1].copy()
+ return interped_ys
+
+ if shared.sd_model.is_sdxl:
+ sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
+ else:
+ # Default to SD 1.5 sigmas.
+ sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
+
+ if n != len(sigmas):
+ sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
+ else:
+ sigmas.append(0.0)
+
+ return torch.FloatTensor(sigmas).to(device)
+
+def kl_optimal(n, sigma_min, sigma_max, device):
+ alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
+ alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
+ step_indices = torch.arange(n + 1, device=device)
+ sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
+ return sigmas
+
schedulers = [
Scheduler('automatic', 'Automatic', None),
@@ -38,6 +76,8 @@ schedulers = [
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
+ Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
+ Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
]
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
diff --git a/modules/shared_init.py b/modules/shared_init.py
index 935e3a21c..a6ad0433d 100644
--- a/modules/shared_init.py
+++ b/modules/shared_init.py
@@ -31,6 +31,14 @@ def initialize():
devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
devices.dtype_inference = torch.float32 if cmd_opts.precision == 'full' else devices.dtype
+ if cmd_opts.precision == "half":
+ msg = "--no-half and --no-half-vae conflict with --precision half"
+ assert devices.dtype == torch.float16, msg
+ assert devices.dtype_vae == torch.float16, msg
+ assert devices.dtype_inference == torch.float16, msg
+ devices.force_fp16 = True
+ devices.force_model_fp16()
+
shared.device = devices.device
shared.weight_load_location = None if cmd_opts.lowram else "cpu"
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 326a317e0..05c3d9391 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -209,7 +209,8 @@ options_templates.update(options_section(('img2img', "img2img", "sd"), {
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
- "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stablediffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
@@ -380,7 +381,8 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
- 'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models")
+ 'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
+ 'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
diff --git a/requirements_versions.txt b/requirements_versions.txt
index 3df74f3d6..3037a395b 100644
--- a/requirements_versions.txt
+++ b/requirements_versions.txt
@@ -1,3 +1,4 @@
+setuptools==69.5.1 # temp fix for compatibility with some old packages
GitPython==3.1.32
Pillow==9.5.0
accelerate==0.21.0
diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py
index 81c7abe95..e9b0ac87e 100644
--- a/scripts/xyz_grid.py
+++ b/scripts/xyz_grid.py
@@ -106,17 +106,6 @@ def confirm_range(min_val, max_val, axis_label):
return confirm_range_fun
-def apply_clip_skip(p, x, xs):
- opts.data["CLIP_stop_at_last_layers"] = x
-
-
-def apply_upscale_latent_space(p, x, xs):
- if x.lower().strip() != '0':
- opts.data["use_scale_latent_for_hires_fix"] = True
- else:
- opts.data["use_scale_latent_for_hires_fix"] = False
-
-
def apply_size(p, x: str, xs) -> None:
try:
width, _, height = x.partition('x')
@@ -129,21 +118,16 @@ def apply_size(p, x: str, xs) -> None:
def find_vae(name: str):
- if name.lower() in ['auto', 'automatic']:
- return modules.sd_vae.unspecified
- if name.lower() == 'none':
- return None
- else:
- choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
- if len(choices) == 0:
- print(f"No VAE found for {name}; using automatic")
- return modules.sd_vae.unspecified
- else:
- return modules.sd_vae.vae_dict[choices[0]]
+ match name := name.lower().strip():
+ case 'auto', 'automatic':
+ return 'Automatic'
+ case 'none':
+ return 'None'
+ return next((k for k in modules.sd_vae.vae_dict if k.lower() == name), print(f'No VAE found for {name}; using Automatic') or 'Automatic')
def apply_vae(p, x, xs):
- modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
+ p.override_settings['sd_vae'] = find_vae(x)
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
@@ -151,7 +135,7 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
def apply_uni_pc_order(p, x, xs):
- opts.data["uni_pc_order"] = min(x, p.steps - 1)
+ p.override_settings['uni_pc_order'] = min(x, p.steps - 1)
def apply_face_restore(p, opt, x):
@@ -277,13 +261,13 @@ axis_options = [
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Eta", float, apply_field("eta")),
- AxisOption("Clip skip", int, apply_clip_skip),
+ AxisOption("Clip skip", int, apply_override('CLIP_stop_at_last_layers')),
AxisOption("Denoising", float, apply_field("denoising_strength")),
AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
- AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)),
+ AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['Automatic', 'None'] + list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
@@ -412,18 +396,12 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
class SharedSettingsStackHelper(object):
def __enter__(self):
- self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
- self.vae = opts.sd_vae
- self.uni_pc_order = opts.uni_pc_order
+ pass
def __exit__(self, exc_type, exc_value, tb):
- opts.data["sd_vae"] = self.vae
- opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
- opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
-
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
diff --git a/webui-macos-env.sh b/webui-macos-env.sh
index db7e8b1a0..ad0736378 100644
--- a/webui-macos-env.sh
+++ b/webui-macos-env.sh
@@ -11,7 +11,12 @@ fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
-export TORCH_COMMAND="pip install torch==2.1.0 torchvision==0.16.0"
export PYTORCH_ENABLE_MPS_FALLBACK=1
+if [[ "$(sysctl -n machdep.cpu.brand_string)" =~ ^.*"Intel".*$ ]]; then
+ export TORCH_COMMAND="pip install torch==2.1.2 torchvision==0.16.2"
+else
+ export TORCH_COMMAND="pip install torch==2.3.0 torchvision==0.18.0"
+fi
+
####################################################################