undo some changes from #15823 and fix whitespace
This commit is contained in:
parent
1d0bb39797
commit
99e65ec618
|
@ -1,7 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
import inspect
|
import inspect
|
||||||
import k_diffusion.sampling
|
import k_diffusion.sampling
|
||||||
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers
|
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers, devices
|
||||||
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
|
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
|
||||||
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
|
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
|
||||||
|
|
||||||
|
@ -115,7 +115,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
||||||
if scheduler.need_inner_model:
|
if scheduler.need_inner_model:
|
||||||
sigmas_kwargs['inner_model'] = self.model_wrap
|
sigmas_kwargs['inner_model'] = self.model_wrap
|
||||||
|
|
||||||
sigmas = scheduler.function(n=steps, **sigmas_kwargs)
|
sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=devices.cpu)
|
||||||
|
|
||||||
if discard_next_to_last_sigma:
|
if discard_next_to_last_sigma:
|
||||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||||
|
|
|
@ -1,19 +1,19 @@
|
||||||
import dataclasses
|
import dataclasses
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import k_diffusion
|
import k_diffusion
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
|
|
||||||
|
|
||||||
def to_d(x, sigma, denoised):
|
def to_d(x, sigma, denoised):
|
||||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||||
return (x - denoised) / sigma
|
return (x - denoised) / sigma
|
||||||
|
|
||||||
|
|
||||||
k_diffusion.sampling.to_d = to_d
|
k_diffusion.sampling.to_d = to_d
|
||||||
|
|
||||||
|
|
||||||
@dataclasses.dataclass
|
@dataclasses.dataclass
|
||||||
class Scheduler:
|
class Scheduler:
|
||||||
name: str
|
name: str
|
||||||
|
@ -25,11 +25,11 @@ class Scheduler:
|
||||||
aliases: list = None
|
aliases: list = None
|
||||||
|
|
||||||
|
|
||||||
def uniform(n, sigma_min, sigma_max, inner_model):
|
def uniform(n, sigma_min, sigma_max, inner_model, device):
|
||||||
return inner_model.get_sigmas(n)
|
return inner_model.get_sigmas(n).to(device)
|
||||||
|
|
||||||
|
|
||||||
def sgm_uniform(n, sigma_min, sigma_max, inner_model):
|
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
|
||||||
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
||||||
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
||||||
sigs = [
|
sigs = [
|
||||||
|
@ -37,9 +37,10 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model):
|
||||||
for ts in torch.linspace(start, end, n + 1)[:-1]
|
for ts in torch.linspace(start, end, n + 1)[:-1]
|
||||||
]
|
]
|
||||||
sigs += [0.0]
|
sigs += [0.0]
|
||||||
return torch.FloatTensor(sigs)
|
return torch.FloatTensor(sigs).to(device)
|
||||||
|
|
||||||
def get_align_your_steps_sigmas(n, sigma_min, sigma_max):
|
|
||||||
|
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
|
||||||
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
||||||
def loglinear_interp(t_steps, num_steps):
|
def loglinear_interp(t_steps, num_steps):
|
||||||
"""
|
"""
|
||||||
|
@ -65,12 +66,13 @@ def get_align_your_steps_sigmas(n, sigma_min, sigma_max):
|
||||||
else:
|
else:
|
||||||
sigmas.append(0.0)
|
sigmas.append(0.0)
|
||||||
|
|
||||||
return torch.FloatTensor(sigmas)
|
return torch.FloatTensor(sigmas).to(device)
|
||||||
|
|
||||||
def kl_optimal(n, sigma_min, sigma_max):
|
|
||||||
alpha_min = torch.arctan(torch.tensor(sigma_min))
|
def kl_optimal(n, sigma_min, sigma_max, device):
|
||||||
alpha_max = torch.arctan(torch.tensor(sigma_max))
|
alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
|
||||||
step_indices = torch.arange(n + 1)
|
alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
|
||||||
|
step_indices = torch.arange(n + 1, device=device)
|
||||||
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
|
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
|
||||||
return sigmas
|
return sigmas
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue