support for generating images on video cards with 4GB

This commit is contained in:
AUTOMATIC 2022-08-29 01:58:15 +03:00
parent 7a7a3a6b19
commit 9c9f048b5e
1 changed files with 86 additions and 4 deletions

View File

@ -2,6 +2,8 @@ import argparse
import os
import sys
from collections import namedtuple
from contextlib import nullcontext
import torch
import torch.nn as nn
import numpy as np
@ -51,6 +53,7 @@ parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--lowvram", action='store_true', help="enamble optimizations for low vram")
cmd_opts = parser.parse_args()
@ -185,11 +188,80 @@ def load_model_from_config(config, ckpt, verbose=False):
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
module_in_gpu = None
def setup_for_low_vram(sd_model):
parents = {}
def send_me_to_gpu(module, _):
"""send this module to GPU; send whatever tracked module was previous in GPU to CPU;
we add this as forward_pre_hook to a lot of modules and this way all but one of them will
be in CPU
"""
global module_in_gpu
module = parents.get(module, module)
if module_in_gpu == module:
return
if module_in_gpu is not None:
print('removing from gpu:', type(module_in_gpu))
module_in_gpu.to(cpu)
print('adding to gpu:', type(module))
module.to(gpu)
print('added to gpu:', type(module))
module_in_gpu = module
# see below for register_forward_pre_hook;
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
# useless here, and we just replace those methods
def first_stage_model_encode_wrap(self, encoder, x):
send_me_to_gpu(self, None)
return encoder(x)
def first_stage_model_decode_wrap(self, decoder, z):
send_me_to_gpu(self, None)
return decoder(z)
# remove three big modules, cond, first_stage, and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
sd_model.to(device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
# register hooks for those the first two models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x)
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
# the third remaining model is still too big for 4GB, so we also do the same for its submodules
# so that only one of them is in GPU at a time
diff_model = sd_model.model.diffusion_model
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
sd_model.model.to(device)
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
# install hooks for bits of third model
diff_model.time_embed.register_forward_pre_hook(send_me_to_gpu)
for block in diff_model.input_blocks:
block.register_forward_pre_hook(send_me_to_gpu)
diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu)
for block in diff_model.output_blocks:
block.register_forward_pre_hook(send_me_to_gpu)
def create_random_tensors(shape, seeds):
xs = []
for seed in seeds:
@ -838,7 +910,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, model)
output_images = []
with torch.no_grad(), autocast("cuda"), model.ema_scope():
ema_scope = (nullcontext if cmd_opts.lowvram else model.ema_scope)
with torch.no_grad(), autocast("cuda"), ema_scope():
p.init()
for n in range(p.n_iter):
@ -1327,8 +1400,17 @@ interfaces = [
sd_config = OmegaConf.load(cmd_opts.config)
sd_model = load_model_from_config(sd_config, cmd_opts.ckpt)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
sd_model = (sd_model if cmd_opts.no_half else sd_model.half()).to(device)
cpu = torch.device("cpu")
gpu = torch.device("cuda")
device = gpu if torch.cuda.is_available() else cpu
sd_model = (sd_model if cmd_opts.no_half else sd_model.half())
if not cmd_opts.lowvram:
sd_model = sd_model.to(device)
else:
setup_for_low_vram(sd_model)
model_hijack = StableDiffusionModelHijack()
model_hijack.hijack(sd_model)