test implementation based on kohaku diag-oft implementation
This commit is contained in:
parent
6523edb8a4
commit
a2fad6ee05
|
@ -1,5 +1,6 @@
|
||||||
import torch
|
import torch
|
||||||
import network
|
import network
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
|
||||||
class ModuleTypeOFT(network.ModuleType):
|
class ModuleTypeOFT(network.ModuleType):
|
||||||
|
@ -30,35 +31,51 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||||
|
|
||||||
self.org_module: list[torch.Module] = [self.sd_module]
|
self.org_module: list[torch.Module] = [self.sd_module]
|
||||||
|
|
||||||
def merge_weight(self, R_weight, org_weight):
|
# def merge_weight(self, R_weight, org_weight):
|
||||||
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
# R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||||
if org_weight.dim() == 4:
|
# if org_weight.dim() == 4:
|
||||||
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
# weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
||||||
else:
|
# else:
|
||||||
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
# weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
||||||
return weight
|
# weight = torch.einsum(
|
||||||
|
# "k n m, k n ... -> k m ...",
|
||||||
|
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
|
||||||
|
# org_weight
|
||||||
|
# )
|
||||||
|
# return weight
|
||||||
|
|
||||||
def get_weight(self, oft_blocks, multiplier=None):
|
def get_weight(self, oft_blocks, multiplier=None):
|
||||||
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
# constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
||||||
|
|
||||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
# block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||||
norm_Q = torch.norm(block_Q.flatten())
|
# norm_Q = torch.norm(block_Q.flatten())
|
||||||
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
# new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
||||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
# block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||||
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
# m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||||
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
# block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
||||||
|
|
||||||
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
# block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
||||||
R = torch.block_diag(*block_R_weighted)
|
# R = torch.block_diag(*block_R_weighted)
|
||||||
|
#return R
|
||||||
|
return self.oft_blocks
|
||||||
|
|
||||||
return R
|
|
||||||
|
|
||||||
def calc_updown(self, orig_weight):
|
def calc_updown(self, orig_weight):
|
||||||
multiplier = self.multiplier() * self.calc_scale()
|
multiplier = self.multiplier() * self.calc_scale()
|
||||||
R = self.get_weight(self.oft_blocks, multiplier)
|
#R = self.get_weight(self.oft_blocks, multiplier)
|
||||||
merged_weight = self.merge_weight(R, orig_weight)
|
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||||
|
#merged_weight = self.merge_weight(R, orig_weight)
|
||||||
|
|
||||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||||
|
weight = torch.einsum(
|
||||||
|
'k n m, k n ... -> k m ...',
|
||||||
|
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
|
||||||
|
orig_weight
|
||||||
|
)
|
||||||
|
weight = rearrange(weight, 'k m ... -> (k m) ...')
|
||||||
|
|
||||||
|
#updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||||
|
updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||||
output_shape = orig_weight.shape
|
output_shape = orig_weight.shape
|
||||||
orig_weight = orig_weight
|
orig_weight = orig_weight
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue