test implementation based on kohaku diag-oft implementation
This commit is contained in:
parent
6523edb8a4
commit
a2fad6ee05
|
@ -1,5 +1,6 @@
|
|||
import torch
|
||||
import network
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
class ModuleTypeOFT(network.ModuleType):
|
||||
|
@ -30,35 +31,51 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
def merge_weight(self, R_weight, org_weight):
|
||||
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||
if org_weight.dim() == 4:
|
||||
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
||||
else:
|
||||
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
||||
return weight
|
||||
# def merge_weight(self, R_weight, org_weight):
|
||||
# R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||
# if org_weight.dim() == 4:
|
||||
# weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
||||
# else:
|
||||
# weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
||||
# weight = torch.einsum(
|
||||
# "k n m, k n ... -> k m ...",
|
||||
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
|
||||
# org_weight
|
||||
# )
|
||||
# return weight
|
||||
|
||||
def get_weight(self, oft_blocks, multiplier=None):
|
||||
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
||||
# constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
||||
|
||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
||||
# block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||
# norm_Q = torch.norm(block_Q.flatten())
|
||||
# new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
||||
# block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
# m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||
# block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
||||
|
||||
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
||||
R = torch.block_diag(*block_R_weighted)
|
||||
# block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
||||
# R = torch.block_diag(*block_R_weighted)
|
||||
#return R
|
||||
return self.oft_blocks
|
||||
|
||||
return R
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
multiplier = self.multiplier() * self.calc_scale()
|
||||
R = self.get_weight(self.oft_blocks, multiplier)
|
||||
merged_weight = self.merge_weight(R, orig_weight)
|
||||
#R = self.get_weight(self.oft_blocks, multiplier)
|
||||
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
#merged_weight = self.merge_weight(R, orig_weight)
|
||||
|
||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
weight = torch.einsum(
|
||||
'k n m, k n ... -> k m ...',
|
||||
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
|
||||
orig_weight
|
||||
)
|
||||
weight = rearrange(weight, 'k m ... -> (k m) ...')
|
||||
|
||||
#updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
output_shape = orig_weight.shape
|
||||
orig_weight = orig_weight
|
||||
|
||||
|
|
Loading…
Reference in New Issue