fixes for B007
This commit is contained in:
parent
550256db1c
commit
a5121e7a06
|
@ -88,7 +88,7 @@ class LDSR:
|
|||
|
||||
x_t = None
|
||||
logs = None
|
||||
for n in range(n_runs):
|
||||
for _ in range(n_runs):
|
||||
if custom_shape is not None:
|
||||
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
|
||||
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
|
||||
|
|
|
@ -418,7 +418,7 @@ def infotext_pasted(infotext, params):
|
|||
|
||||
added = []
|
||||
|
||||
for k, v in params.items():
|
||||
for k in params:
|
||||
if not k.startswith("AddNet Model "):
|
||||
continue
|
||||
|
||||
|
|
|
@ -132,7 +132,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
|
||||
model.load_state_dict(torch.load(filename), strict=True)
|
||||
model.eval()
|
||||
for k, v in model.named_parameters():
|
||||
for _, v in model.named_parameters():
|
||||
v.requires_grad = False
|
||||
model = model.to(device)
|
||||
|
||||
|
|
|
@ -848,7 +848,7 @@ class SwinIR(nn.Module):
|
|||
H, W = self.patches_resolution
|
||||
flops += H * W * 3 * self.embed_dim * 9
|
||||
flops += self.patch_embed.flops()
|
||||
for i, layer in enumerate(self.layers):
|
||||
for layer in self.layers:
|
||||
flops += layer.flops()
|
||||
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
||||
flops += self.upsample.flops()
|
||||
|
|
|
@ -1001,7 +1001,7 @@ class Swin2SR(nn.Module):
|
|||
H, W = self.patches_resolution
|
||||
flops += H * W * 3 * self.embed_dim * 9
|
||||
flops += self.patch_embed.flops()
|
||||
for i, layer in enumerate(self.layers):
|
||||
for layer in self.layers:
|
||||
flops += layer.flops()
|
||||
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
||||
flops += self.upsample.flops()
|
||||
|
|
|
@ -94,7 +94,7 @@ def setup_model(dirname):
|
|||
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
||||
self.face_helper.align_warp_face()
|
||||
|
||||
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
|
||||
for cropped_face in self.face_helper.cropped_faces:
|
||||
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
||||
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
||||
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
|
||||
|
|
|
@ -16,9 +16,7 @@ def mod2normal(state_dict):
|
|||
# this code is copied from https://github.com/victorca25/iNNfer
|
||||
if 'conv_first.weight' in state_dict:
|
||||
crt_net = {}
|
||||
items = []
|
||||
for k, v in state_dict.items():
|
||||
items.append(k)
|
||||
items = list(state_dict)
|
||||
|
||||
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||
|
@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23):
|
|||
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
||||
re8x = 0
|
||||
crt_net = {}
|
||||
items = []
|
||||
for k, v in state_dict.items():
|
||||
items.append(k)
|
||||
items = list(state_dict)
|
||||
|
||||
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||
|
|
|
@ -91,7 +91,7 @@ def deactivate(p, extra_network_data):
|
|||
"""call deactivate for extra networks in extra_network_data in specified order, then call
|
||||
deactivate for all remaining registered networks"""
|
||||
|
||||
for extra_network_name, extra_network_args in extra_network_data.items():
|
||||
for extra_network_name in extra_network_data:
|
||||
extra_network = extra_network_registry.get(extra_network_name, None)
|
||||
if extra_network is None:
|
||||
continue
|
||||
|
|
|
@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
|||
lines.append(lastline)
|
||||
lastline = ''
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if line.startswith("Negative prompt:"):
|
||||
done_with_prompt = True
|
||||
|
|
|
@ -177,34 +177,34 @@ class Hypernetwork:
|
|||
|
||||
def weights(self):
|
||||
res = []
|
||||
for k, layers in self.layers.items():
|
||||
for layers in self.layers.values():
|
||||
for layer in layers:
|
||||
res += layer.parameters()
|
||||
return res
|
||||
|
||||
def train(self, mode=True):
|
||||
for k, layers in self.layers.items():
|
||||
for layers in self.layers.values():
|
||||
for layer in layers:
|
||||
layer.train(mode=mode)
|
||||
for param in layer.parameters():
|
||||
param.requires_grad = mode
|
||||
|
||||
def to(self, device):
|
||||
for k, layers in self.layers.items():
|
||||
for layers in self.layers.values():
|
||||
for layer in layers:
|
||||
layer.to(device)
|
||||
|
||||
return self
|
||||
|
||||
def set_multiplier(self, multiplier):
|
||||
for k, layers in self.layers.items():
|
||||
for layers in self.layers.values():
|
||||
for layer in layers:
|
||||
layer.multiplier = multiplier
|
||||
|
||||
return self
|
||||
|
||||
def eval(self):
|
||||
for k, layers in self.layers.items():
|
||||
for layers in self.layers.values():
|
||||
for layer in layers:
|
||||
layer.eval()
|
||||
for param in layer.parameters():
|
||||
|
@ -619,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||
try:
|
||||
sd_hijack_checkpoint.add()
|
||||
|
||||
for i in range((steps-initial_step) * gradient_step):
|
||||
for _ in range((steps-initial_step) * gradient_step):
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
|
|
|
@ -149,7 +149,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
|
|||
return ImageFont.truetype(Roboto, fontsize)
|
||||
|
||||
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
|
||||
for i, line in enumerate(lines):
|
||||
for line in lines:
|
||||
fnt = initial_fnt
|
||||
fontsize = initial_fontsize
|
||||
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
|
||||
|
|
|
@ -207,8 +207,8 @@ class InterrogateModels:
|
|||
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
for name, topn, items in self.categories():
|
||||
matches = self.rank(image_features, items, top_count=topn)
|
||||
for cat in self.categories():
|
||||
matches = self.rank(image_features, cat.items, top_count=cat.topn)
|
||||
for match, score in matches:
|
||||
if shared.opts.interrogate_return_ranks:
|
||||
res += f", ({match}:{score/100:.3f})"
|
||||
|
|
|
@ -143,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps):
|
|||
conds = model.get_learned_conditioning(texts)
|
||||
|
||||
cond_schedule = []
|
||||
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||||
for i, (end_at_step, _) in enumerate(prompt_schedule):
|
||||
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
||||
|
||||
cache[prompt] = cond_schedule
|
||||
|
@ -219,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s
|
|||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||
for i, cond_schedule in enumerate(c):
|
||||
target_index = 0
|
||||
for current, (end_at, cond) in enumerate(cond_schedule):
|
||||
if current_step <= end_at:
|
||||
for current, entry in enumerate(cond_schedule):
|
||||
if current_step <= entry.end_at_step:
|
||||
target_index = current
|
||||
break
|
||||
res[i] = cond_schedule[target_index].cond
|
||||
|
@ -234,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
|||
tensors = []
|
||||
conds_list = []
|
||||
|
||||
for batch_no, composable_prompts in enumerate(c.batch):
|
||||
for composable_prompts in c.batch:
|
||||
conds_for_batch = []
|
||||
|
||||
for cond_index, composable_prompt in enumerate(composable_prompts):
|
||||
for composable_prompt in composable_prompts:
|
||||
target_index = 0
|
||||
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
|
||||
if current_step <= end_at:
|
||||
for current, entry in enumerate(composable_prompt.schedules):
|
||||
if current_step <= entry.end_at_step:
|
||||
target_index = current
|
||||
break
|
||||
|
||||
|
|
|
@ -95,11 +95,11 @@ def check_pt(filename, extra_handler):
|
|||
|
||||
except zipfile.BadZipfile:
|
||||
|
||||
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
||||
# if it's not a zip file, it's an old pytorch format, with five objects written to pickle
|
||||
with open(filename, "rb") as file:
|
||||
unpickler = RestrictedUnpickler(file)
|
||||
unpickler.extra_handler = extra_handler
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
unpickler.load()
|
||||
|
||||
|
||||
|
|
|
@ -231,7 +231,7 @@ def load_scripts():
|
|||
syspath = sys.path
|
||||
|
||||
def register_scripts_from_module(module):
|
||||
for key, script_class in module.__dict__.items():
|
||||
for script_class in module.__dict__.values():
|
||||
if type(script_class) != type:
|
||||
continue
|
||||
|
||||
|
@ -295,9 +295,9 @@ class ScriptRunner:
|
|||
|
||||
auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data()
|
||||
|
||||
for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data:
|
||||
script = script_class()
|
||||
script.filename = path
|
||||
for script_data in auto_processing_scripts + scripts_data:
|
||||
script = script_data.script_class()
|
||||
script.filename = script_data.path
|
||||
script.is_txt2img = not is_img2img
|
||||
script.is_img2img = is_img2img
|
||||
|
||||
|
@ -492,7 +492,7 @@ class ScriptRunner:
|
|||
module = script_loading.load_module(script.filename)
|
||||
cache[filename] = module
|
||||
|
||||
for key, script_class in module.__dict__.items():
|
||||
for script_class in module.__dict__.values():
|
||||
if type(script_class) == type and issubclass(script_class, Script):
|
||||
self.scripts[si] = script_class()
|
||||
self.scripts[si].filename = filename
|
||||
|
|
|
@ -66,9 +66,9 @@ class ScriptPostprocessingRunner:
|
|||
def initialize_scripts(self, scripts_data):
|
||||
self.scripts = []
|
||||
|
||||
for script_class, path, basedir, script_module in scripts_data:
|
||||
script: ScriptPostprocessing = script_class()
|
||||
script.filename = path
|
||||
for script_data in scripts_data:
|
||||
script: ScriptPostprocessing = script_data.script_class()
|
||||
script.filename = script_data.path
|
||||
|
||||
if script.name == "Simple Upscale":
|
||||
continue
|
||||
|
@ -124,7 +124,7 @@ class ScriptPostprocessingRunner:
|
|||
script_args = args[script.args_from:script.args_to]
|
||||
|
||||
process_args = {}
|
||||
for (name, component), value in zip(script.controls.items(), script_args):
|
||||
for (name, component), value in zip(script.controls.items(), script_args): # noqa B007
|
||||
process_args[name] = value
|
||||
|
||||
script.process(pp, **process_args)
|
||||
|
|
|
@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
|||
self.hijack.fixes = [x.fixes for x in batch_chunk]
|
||||
|
||||
for fixes in self.hijack.fixes:
|
||||
for position, embedding in fixes:
|
||||
for position, embedding in fixes: # noqa: B007
|
||||
used_embeddings[embedding.name] = embedding
|
||||
|
||||
z = self.process_tokens(tokens, multipliers)
|
||||
|
|
|
@ -211,7 +211,7 @@ class OptionInfo:
|
|||
|
||||
|
||||
def options_section(section_identifier, options_dict):
|
||||
for k, v in options_dict.items():
|
||||
for v in options_dict.values():
|
||||
v.section = section_identifier
|
||||
|
||||
return options_dict
|
||||
|
@ -579,7 +579,7 @@ class Options:
|
|||
|
||||
section_ids = {}
|
||||
settings_items = self.data_labels.items()
|
||||
for k, item in settings_items:
|
||||
for _, item in settings_items:
|
||||
if item.section not in section_ids:
|
||||
section_ids[item.section] = len(section_ids)
|
||||
|
||||
|
@ -740,7 +740,7 @@ def walk_files(path, allowed_extensions=None):
|
|||
if allowed_extensions is not None:
|
||||
allowed_extensions = set(allowed_extensions)
|
||||
|
||||
for root, dirs, files in os.walk(path):
|
||||
for root, _, files in os.walk(path):
|
||||
for filename in files:
|
||||
if allowed_extensions is not None:
|
||||
_, ext = os.path.splitext(filename)
|
||||
|
|
|
@ -12,7 +12,7 @@ class LearnScheduleIterator:
|
|||
self.it = 0
|
||||
self.maxit = 0
|
||||
try:
|
||||
for i, pair in enumerate(pairs):
|
||||
for pair in pairs:
|
||||
if not pair.strip():
|
||||
continue
|
||||
tmp = pair.split(':')
|
||||
|
|
|
@ -29,7 +29,7 @@ textual_inversion_templates = {}
|
|||
def list_textual_inversion_templates():
|
||||
textual_inversion_templates.clear()
|
||||
|
||||
for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
|
||||
for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
|
||||
for fn in fns:
|
||||
path = os.path.join(root, fn)
|
||||
|
||||
|
@ -198,7 +198,7 @@ class EmbeddingDatabase:
|
|||
if not os.path.isdir(embdir.path):
|
||||
return
|
||||
|
||||
for root, dirs, fns in os.walk(embdir.path, followlinks=True):
|
||||
for root, _, fns in os.walk(embdir.path, followlinks=True):
|
||||
for fn in fns:
|
||||
try:
|
||||
fullfn = os.path.join(root, fn)
|
||||
|
@ -215,7 +215,7 @@ class EmbeddingDatabase:
|
|||
def load_textual_inversion_embeddings(self, force_reload=False):
|
||||
if not force_reload:
|
||||
need_reload = False
|
||||
for path, embdir in self.embedding_dirs.items():
|
||||
for embdir in self.embedding_dirs.values():
|
||||
if embdir.has_changed():
|
||||
need_reload = True
|
||||
break
|
||||
|
@ -228,7 +228,7 @@ class EmbeddingDatabase:
|
|||
self.skipped_embeddings.clear()
|
||||
self.expected_shape = self.get_expected_shape()
|
||||
|
||||
for path, embdir in self.embedding_dirs.items():
|
||||
for embdir in self.embedding_dirs.values():
|
||||
self.load_from_dir(embdir)
|
||||
embdir.update()
|
||||
|
||||
|
@ -469,7 +469,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|||
try:
|
||||
sd_hijack_checkpoint.add()
|
||||
|
||||
for i in range((steps-initial_step) * gradient_step):
|
||||
for _ in range((steps-initial_step) * gradient_step):
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
|
|
|
@ -416,7 +416,7 @@ def create_sampler_and_steps_selection(choices, tabname):
|
|||
def ordered_ui_categories():
|
||||
user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))}
|
||||
|
||||
for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)):
|
||||
for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)):
|
||||
yield category
|
||||
|
||||
|
||||
|
@ -1646,7 +1646,7 @@ def create_ui():
|
|||
|
||||
with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
|
||||
with gr.Row(elem_id="quicksettings", variant="compact"):
|
||||
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
|
||||
for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
|
||||
component = create_setting_component(k, is_quicksettings=True)
|
||||
component_dict[k] = component
|
||||
|
||||
|
@ -1673,7 +1673,7 @@ def create_ui():
|
|||
outputs=[text_settings, result],
|
||||
)
|
||||
|
||||
for i, k, item in quicksettings_list:
|
||||
for _i, k, _item in quicksettings_list:
|
||||
component = component_dict[k]
|
||||
info = opts.data_labels[k]
|
||||
|
||||
|
|
|
@ -90,7 +90,7 @@ class ExtraNetworksPage:
|
|||
|
||||
subdirs = {}
|
||||
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
|
||||
for root, dirs, files in os.walk(parentdir):
|
||||
for root, dirs, _ in os.walk(parentdir):
|
||||
for dirname in dirs:
|
||||
x = os.path.join(root, dirname)
|
||||
|
||||
|
|
|
@ -72,7 +72,7 @@ def cleanup_tmpdr():
|
|||
if temp_dir == "" or not os.path.isdir(temp_dir):
|
||||
return
|
||||
|
||||
for root, dirs, files in os.walk(temp_dir, topdown=False):
|
||||
for root, _, files in os.walk(temp_dir, topdown=False):
|
||||
for name in files:
|
||||
_, extension = os.path.splitext(name)
|
||||
if extension != ".png":
|
||||
|
|
|
@ -55,7 +55,7 @@ class Upscaler:
|
|||
dest_w = int(img.width * scale)
|
||||
dest_h = int(img.height * scale)
|
||||
|
||||
for i in range(3):
|
||||
for _ in range(3):
|
||||
shape = (img.width, img.height)
|
||||
|
||||
img = self.do_upscale(img, selected_model)
|
||||
|
|
|
@ -20,7 +20,6 @@ ignore = [
|
|||
"I001", # Import block is un-sorted or un-formatted
|
||||
"C901", # Function is too complex
|
||||
"C408", # Rewrite as a literal
|
||||
"B007", # Loop control variable not used within loop body
|
||||
|
||||
]
|
||||
|
||||
|
|
|
@ -156,7 +156,7 @@ class Script(scripts.Script):
|
|||
images = []
|
||||
all_prompts = []
|
||||
infotexts = []
|
||||
for n, args in enumerate(jobs):
|
||||
for args in jobs:
|
||||
state.job = f"{state.job_no + 1} out of {state.job_count}"
|
||||
|
||||
copy_p = copy.copy(p)
|
||||
|
|
|
@ -56,7 +56,7 @@ class Script(scripts.Script):
|
|||
|
||||
work = []
|
||||
|
||||
for y, h, row in grid.tiles:
|
||||
for _y, _h, row in grid.tiles:
|
||||
for tiledata in row:
|
||||
work.append(tiledata[2])
|
||||
|
||||
|
@ -85,7 +85,7 @@ class Script(scripts.Script):
|
|||
work_results += processed.images
|
||||
|
||||
image_index = 0
|
||||
for y, h, row in grid.tiles:
|
||||
for _y, _h, row in grid.tiles:
|
||||
for tiledata in row:
|
||||
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
||||
image_index += 1
|
||||
|
|
|
@ -704,7 +704,7 @@ class Script(scripts.Script):
|
|||
|
||||
if not include_sub_grids:
|
||||
# Done with sub-grids, drop all related information:
|
||||
for sg in range(z_count):
|
||||
for _ in range(z_count):
|
||||
del processed.images[1]
|
||||
del processed.all_prompts[1]
|
||||
del processed.all_seeds[1]
|
||||
|
|
Loading…
Reference in New Issue