From a64fbe89288802f8b5ec8ca7bcab5aaf2c7bfea5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 15:12:09 +0300 Subject: [PATCH] make it possible to use checkpoints of different types (SD1, SDXL) in first and second pass of hires fix --- modules/processing.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index 6fb145165..c4da208f6 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1060,16 +1060,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if not self.enable_hr: return samples + if self.latent_scale_mode is None: + decoded_samples = decode_first_stage(self.sd_model, samples) + else: + decoded_samples = None + current = shared.sd_model.sd_checkpoint_info try: if self.hr_checkpoint_info is not None: sd_models.reload_model_weights(info=self.hr_checkpoint_info) - return self.sample_hr_pass(samples, seeds, subseeds, subseed_strength, prompts) + return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) finally: sd_models.reload_model_weights(info=current) - def sample_hr_pass(self, samples, seeds, subseeds, subseed_strength, prompts): + def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): self.is_hr_pass = True target_width = self.hr_upscale_to_x @@ -1100,7 +1105,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: image_conditioning = self.txt2img_image_conditioning(samples) else: - decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) batch_images = []