From ac0ecf3b4b9d147743c04f0ff4ddc4cf4595e11d Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 1 Jan 2024 16:28:58 +0300 Subject: [PATCH] option to convert VAE to bfloat16 (implementation of #9295) --- modules/processing.py | 23 ++++++++++++++++++----- modules/shared_options.py | 1 + 2 files changed, 19 insertions(+), 5 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index 846e4796a..f06568821 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -628,20 +628,33 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): sample = decode_first_stage(model, batch[i:i + 1])[0] if check_for_nans: + try: devices.test_for_nans(sample, "vae") except devices.NansException as e: - if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision: + if shared.opts.auto_vae_precision_bfloat16: + autofix_dtype = torch.bfloat16 + autofix_dtype_text = "bfloat16" + autofix_dtype_setting = "Automatically convert VAE to bfloat16" + autofix_dtype_comment = "" + elif shared.opts.auto_vae_precision: + autofix_dtype = torch.float32 + autofix_dtype_text = "32-bit float" + autofix_dtype_setting = "Automatically revert VAE to 32-bit floats" + autofix_dtype_comment = "\nTo always start with 32-bit VAE, use --no-half-vae commandline flag." + else: + raise e + + if devices.dtype_vae == autofix_dtype: raise e errors.print_error_explanation( "A tensor with all NaNs was produced in VAE.\n" - "Web UI will now convert VAE into 32-bit float and retry.\n" - "To disable this behavior, disable the 'Automatically revert VAE to 32-bit floats' setting.\n" - "To always start with 32-bit VAE, use --no-half-vae commandline flag." + f"Web UI will now convert VAE into {autofix_dtype_text} and retry.\n" + f"To disable this behavior, disable the '{autofix_dtype_setting}' setting.{autofix_dtype_comment}" ) - devices.dtype_vae = torch.float32 + devices.dtype_vae = autofix_dtype model.first_stage_model.to(devices.dtype_vae) batch = batch.to(devices.dtype_vae) diff --git a/modules/shared_options.py b/modules/shared_options.py index ce06f022e..e813546f6 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -177,6 +177,7 @@ For img2img, VAE is used to process user's input image before the sampling, and "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"), + "auto_vae_precision_bfloat16": OptionInfo(False, "Automatically convert VAE to bfloat16").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image; if enabled, overrides the option below"), "auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"), "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"), "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"),