Removed soft inpainting, added hooks for softpainting to work instead.
This commit is contained in:
parent
4608f6236f
commit
ac45789123
|
@ -30,7 +30,6 @@ import modules.sd_models as sd_models
|
|||
import modules.sd_vae as sd_vae
|
||||
from ldm.data.util import AddMiDaS
|
||||
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||
import modules.soft_inpainting as si
|
||||
|
||||
from einops import repeat, rearrange
|
||||
from blendmodes.blend import blendLayers, BlendType
|
||||
|
@ -73,12 +72,10 @@ def uncrop(image, dest_size, paste_loc):
|
|||
return image
|
||||
|
||||
|
||||
def apply_overlay(image, paste_loc, index, overlays):
|
||||
if overlays is None or index >= len(overlays):
|
||||
def apply_overlay(image, paste_loc, overlay):
|
||||
if overlay is None:
|
||||
return image
|
||||
|
||||
overlay = overlays[index]
|
||||
|
||||
if paste_loc is not None:
|
||||
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
|
||||
|
||||
|
@ -150,7 +147,6 @@ class StableDiffusionProcessing:
|
|||
do_not_save_grid: bool = False
|
||||
extra_generation_params: dict[str, Any] = None
|
||||
overlay_images: list = None
|
||||
masks_for_overlay: list = None
|
||||
eta: float = None
|
||||
do_not_reload_embeddings: bool = False
|
||||
denoising_strength: float = None
|
||||
|
@ -880,31 +876,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
||||
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
||||
|
||||
if p.scripts is not None:
|
||||
ps = scripts.PostSampleArgs(samples_ddim)
|
||||
p.scripts.post_sample(p, ps)
|
||||
samples_ddim = pp.samples
|
||||
|
||||
if getattr(samples_ddim, 'already_decoded', False):
|
||||
x_samples_ddim = samples_ddim
|
||||
# todo: generate adaptive masks based on pixel differences.
|
||||
if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None:
|
||||
si.apply_masks(soft_inpainting=p.soft_inpainting,
|
||||
nmask=p.nmask,
|
||||
overlay_images=p.overlay_images,
|
||||
masks_for_overlay=p.masks_for_overlay,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
else:
|
||||
if opts.sd_vae_decode_method != 'Full':
|
||||
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
|
||||
|
||||
# Generate the mask(s) based on similarity between the original and denoised latent vectors
|
||||
if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None:
|
||||
si.apply_adaptive_masks(latent_orig=p.init_latent,
|
||||
latent_processed=samples_ddim,
|
||||
overlay_images=p.overlay_images,
|
||||
masks_for_overlay=p.masks_for_overlay,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
|
||||
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
|
||||
|
||||
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||
|
@ -955,9 +937,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
pp = scripts.PostprocessImageArgs(image)
|
||||
p.scripts.postprocess_image(p, pp)
|
||||
image = pp.image
|
||||
|
||||
mask_for_overlay = p.mask_for_overlay
|
||||
overlay_image = p.overlay_images[i] if p.overlay_images is not None and i < len(p.overlay_images) else None
|
||||
|
||||
if p.scripts is not None:
|
||||
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
|
||||
p.scripts.postprocess_maskoverlay(p, ppmo)
|
||||
mask_for_overlay, overlay_image = pp.mask_for_overlay, pp.overlay_image
|
||||
|
||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||
if save_samples and opts.save_images_before_color_correction:
|
||||
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
|
||||
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
|
||||
image = apply_color_correction(p.color_corrections[i], image)
|
||||
|
||||
|
@ -968,9 +959,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
original_denoised_image = image.copy()
|
||||
|
||||
if p.paste_to is not None:
|
||||
original_denoised_image = uncrop(original_denoised_image, (p.overlay_images[i].width, p.overlay_images[i].height), p.paste_to)
|
||||
original_denoised_image = uncrop(original_denoised_image, (p.overlay_image.width, p.overlay_image.height), p.paste_to)
|
||||
|
||||
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
image = apply_overlay(image, p.paste_to, overlay_image)
|
||||
|
||||
if save_samples:
|
||||
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
|
||||
|
@ -981,13 +972,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
image.info["parameters"] = text
|
||||
output_images.append(image)
|
||||
|
||||
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
|
||||
mask_for_overlay = p.mask_for_overlay
|
||||
elif hasattr(p, 'masks_for_overlay') and p.masks_for_overlay and p.masks_for_overlay[i]:
|
||||
mask_for_overlay = p.masks_for_overlay[i]
|
||||
else:
|
||||
mask_for_overlay = None
|
||||
|
||||
if mask_for_overlay is not None:
|
||||
if opts.return_mask or opts.save_mask:
|
||||
image_mask = mask_for_overlay.convert('RGB')
|
||||
|
@ -1401,7 +1385,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
mask_blur_x: int = 4
|
||||
mask_blur_y: int = 4
|
||||
mask_blur: int = None
|
||||
soft_inpainting: si.SoftInpaintingParameters = si.default
|
||||
mask_round: bool = True
|
||||
inpainting_fill: int = 0
|
||||
inpaint_full_res: bool = True
|
||||
inpaint_full_res_padding: int = 0
|
||||
|
@ -1447,7 +1431,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
if image_mask is not None:
|
||||
# image_mask is passed in as RGBA by Gradio to support alpha masks,
|
||||
# but we still want to support binary masks.
|
||||
image_mask = create_binary_mask(image_mask, round=(self.soft_inpainting is None))
|
||||
image_mask = create_binary_mask(image_mask, round=self.mask_round)
|
||||
|
||||
if self.inpainting_mask_invert:
|
||||
image_mask = ImageOps.invert(image_mask)
|
||||
|
@ -1465,7 +1449,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
image_mask = Image.fromarray(np_mask)
|
||||
|
||||
if self.inpaint_full_res:
|
||||
self.mask_for_overlay = image_mask if self.soft_inpainting is None else None
|
||||
self.mask_for_overlay = image_mask
|
||||
mask = image_mask.convert('L')
|
||||
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||
|
@ -1476,13 +1460,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||
else:
|
||||
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
||||
np_mask = np.array(image_mask)
|
||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||
|
||||
if self.soft_inpainting is None:
|
||||
np_mask = np.array(image_mask)
|
||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||
|
||||
self.masks_for_overlay = [] if self.soft_inpainting is not None else None
|
||||
self.overlay_images = []
|
||||
|
||||
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
||||
|
@ -1504,15 +1485,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.soft_inpainting is not None:
|
||||
# We apply the masks AFTER to adjust mask based on changed content.
|
||||
self.overlay_images.append(image.convert('RGBA'))
|
||||
self.masks_for_overlay.append(image_mask)
|
||||
else:
|
||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||
|
||||
self.overlay_images.append(image_masked.convert('RGBA'))
|
||||
self.overlay_images.append(image_masked.convert('RGBA'))
|
||||
|
||||
# crop_region is not None if we are doing inpaint full res
|
||||
if crop_region is not None:
|
||||
|
@ -1565,7 +1541,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||
latmask = latmask[0]
|
||||
if self.soft_inpainting is None:
|
||||
if self.mask_round:
|
||||
latmask = np.around(latmask)
|
||||
latmask = np.tile(latmask[None], (4, 1, 1))
|
||||
|
||||
|
@ -1578,7 +1554,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
elif self.inpainting_fill == 3:
|
||||
self.init_latent = self.init_latent * self.mask
|
||||
|
||||
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.soft_inpainting is None)
|
||||
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
x = self.rng.next()
|
||||
|
@ -1589,8 +1565,14 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
|
||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||
|
||||
if self.mask is not None and self.soft_inpainting is None:
|
||||
samples = samples * self.nmask + self.init_latent * self.mask
|
||||
blended_samples = samples * self.nmask + self.init_latent * self.mask
|
||||
|
||||
if self.scripts is not None:
|
||||
mba = scripts.MaskBlendArgs(self, samples, self.nmask, self.init_latent, self.mask, blended_samples, sigma=None, is_final_blend=True)
|
||||
self.scripts.on_mask_blend(self, mba)
|
||||
blended_samples = mba.blended_latent
|
||||
|
||||
samples = blended_samples
|
||||
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
|
|
@ -11,11 +11,31 @@ from modules import shared, paths, script_callbacks, extensions, script_loading,
|
|||
|
||||
AlwaysVisible = object()
|
||||
|
||||
class MaskBlendArgs:
|
||||
def __init__(self, current_latent, nmask, init_latent, mask, blended_samples, denoiser=None, sigma=None):
|
||||
self.current_latent = current_latent
|
||||
self.nmask = nmask
|
||||
self.init_latent = init_latent
|
||||
self.mask = mask
|
||||
self.blended_samples = blended_samples
|
||||
|
||||
self.denoiser = denoiser
|
||||
self.is_final_blend = denoiser is None
|
||||
self.sigma = sigma
|
||||
|
||||
class PostSampleArgs:
|
||||
def __init__(self, samples):
|
||||
self.samples = samples
|
||||
|
||||
class PostprocessImageArgs:
|
||||
def __init__(self, image):
|
||||
self.image = image
|
||||
|
||||
class PostProcessMaskOverlayArgs:
|
||||
def __init__(self, index, mask_for_overlay, overlay_image):
|
||||
self.index = index
|
||||
self.mask_for_overlay = mask_for_overlay
|
||||
self.overlay_image = overlay_image
|
||||
|
||||
class PostprocessBatchListArgs:
|
||||
def __init__(self, images):
|
||||
|
@ -206,6 +226,25 @@ class Script:
|
|||
|
||||
pass
|
||||
|
||||
def on_mask_blend(self, p, mba: MaskBlendArgs, *args):
|
||||
"""
|
||||
Called in inpainting mode when the original content is blended with the inpainted content.
|
||||
This is called at every step in the denoising process and once at the end.
|
||||
If is_final_blend is true, this is called for the final blending stage.
|
||||
Otherwise, denoiser and sigma are defined and may be used to inform the procedure.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def post_sample(self, p, ps: PostSampleArgs, *args):
|
||||
"""
|
||||
Called after the samples have been generated,
|
||||
but before they have been decoded by the VAE, if applicable.
|
||||
Check getattr(samples, 'already_decoded', False) to test if the images are decoded.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
|
||||
"""
|
||||
Called for every image after it has been generated.
|
||||
|
@ -213,6 +252,13 @@ class Script:
|
|||
|
||||
pass
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs, *args):
|
||||
"""
|
||||
Called for every image after it has been generated.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def postprocess(self, p, processed, *args):
|
||||
"""
|
||||
This function is called after processing ends for AlwaysVisible scripts.
|
||||
|
@ -767,6 +813,22 @@ class ScriptRunner:
|
|||
except Exception:
|
||||
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
|
||||
|
||||
def post_sample(self, p, ps: PostSampleArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.post_sample(p, ps, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def on_mask_blend(self, p, mba: MaskBlendArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.on_mask_blend(p, mba, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
|
@ -775,6 +837,14 @@ class ScriptRunner:
|
|||
except Exception:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_maskoverlay(p, ppmo, *script_args)
|
||||
except Exception:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def before_component(self, component, **kwargs):
|
||||
for callback, script in self.on_before_component_elem_id.get(kwargs.get("elem_id"), []):
|
||||
try:
|
||||
|
|
|
@ -109,19 +109,16 @@ class CFGDenoiser(torch.nn.Module):
|
|||
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
|
||||
|
||||
# If we use masks, blending between the denoised and original latent images occurs here.
|
||||
def apply_blend(latent):
|
||||
if hasattr(self.p, "denoiser_masked_blend_function") and callable(self.p.denoiser_masked_blend_function):
|
||||
return self.p.denoiser_masked_blend_function(
|
||||
self,
|
||||
# Using an argument dictionary so that arguments can be added without breaking extensions.
|
||||
args=
|
||||
{
|
||||
"denoiser": self,
|
||||
"current_latent": latent,
|
||||
"sigma": sigma
|
||||
})
|
||||
else:
|
||||
return self.init_latent * self.mask + self.nmask * latent
|
||||
def apply_blend(current_latent):
|
||||
blended_latent = current_latent * self.nmask + self.init_latent * self.mask
|
||||
|
||||
if self.p.scripts is not None:
|
||||
from modules import scripts
|
||||
mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
|
||||
self.p.scripts.on_mask_blend(self.p, mba)
|
||||
blended_latent = mba.blended_latent
|
||||
|
||||
return blended_latent
|
||||
|
||||
# Blend in the original latents (before)
|
||||
if self.mask_before_denoising and self.mask is not None:
|
||||
|
|
Loading…
Reference in New Issue