Use narrow instead of dynamic_slice
This commit is contained in:
parent
3bfe2bb549
commit
b119815333
|
@ -5,6 +5,7 @@
|
|||
# credit:
|
||||
# Amin Rezaei (original author)
|
||||
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
|
||||
# brkirch (modified to use torch.narrow instead of dynamic_slice implementation)
|
||||
# implementation of:
|
||||
# Self-attention Does Not Need O(n2) Memory":
|
||||
# https://arxiv.org/abs/2112.05682v2
|
||||
|
@ -16,13 +17,13 @@ from torch.utils.checkpoint import checkpoint
|
|||
import math
|
||||
from typing import Optional, NamedTuple, Protocol, List
|
||||
|
||||
def dynamic_slice(
|
||||
x: Tensor,
|
||||
starts: List[int],
|
||||
sizes: List[int],
|
||||
def narrow_trunc(
|
||||
input: Tensor,
|
||||
dim: int,
|
||||
start: int,
|
||||
length: int
|
||||
) -> Tensor:
|
||||
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
||||
return x[slicing]
|
||||
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
|
||||
|
||||
class AttnChunk(NamedTuple):
|
||||
exp_values: Tensor
|
||||
|
@ -76,15 +77,17 @@ def _query_chunk_attention(
|
|||
_, _, v_channels_per_head = value.shape
|
||||
|
||||
def chunk_scanner(chunk_idx: int) -> AttnChunk:
|
||||
key_chunk = dynamic_slice(
|
||||
key_chunk = narrow_trunc(
|
||||
key,
|
||||
(0, chunk_idx, 0),
|
||||
(batch_x_heads, kv_chunk_size, k_channels_per_head)
|
||||
1,
|
||||
chunk_idx,
|
||||
kv_chunk_size
|
||||
)
|
||||
value_chunk = dynamic_slice(
|
||||
value_chunk = narrow_trunc(
|
||||
value,
|
||||
(0, chunk_idx, 0),
|
||||
(batch_x_heads, kv_chunk_size, v_channels_per_head)
|
||||
1,
|
||||
chunk_idx,
|
||||
kv_chunk_size
|
||||
)
|
||||
return summarize_chunk(query, key_chunk, value_chunk)
|
||||
|
||||
|
@ -161,10 +164,11 @@ def efficient_dot_product_attention(
|
|||
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
|
||||
|
||||
def get_query_chunk(chunk_idx: int) -> Tensor:
|
||||
return dynamic_slice(
|
||||
return narrow_trunc(
|
||||
query,
|
||||
(0, chunk_idx, 0),
|
||||
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
|
||||
1,
|
||||
chunk_idx,
|
||||
min(query_chunk_size, q_tokens)
|
||||
)
|
||||
|
||||
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
|
||||
|
|
Loading…
Reference in New Issue