Merge pull request #16149 from AndreyRGW/devpatch1
Add Normal and DDIM Schedulers
This commit is contained in:
commit
b282b47b85
|
@ -76,6 +76,33 @@ def kl_optimal(n, sigma_min, sigma_max, device):
|
|||
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
|
||||
return sigmas
|
||||
|
||||
def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
|
||||
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
||||
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
||||
|
||||
if sgm:
|
||||
timesteps = torch.linspace(start, end, n + 1)[:-1]
|
||||
else:
|
||||
timesteps = torch.linspace(start, end, n)
|
||||
|
||||
sigs = []
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
sigs.append(inner_model.t_to_sigma(ts))
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs).to(device)
|
||||
|
||||
def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
||||
sigs = []
|
||||
ss = max(len(inner_model.sigmas) // n, 1)
|
||||
x = 1
|
||||
while x < len(inner_model.sigmas):
|
||||
sigs += [float(inner_model.sigmas[x])]
|
||||
x += ss
|
||||
sigs = sigs[::-1]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs).to(device)
|
||||
|
||||
|
||||
schedulers = [
|
||||
Scheduler('automatic', 'Automatic', None),
|
||||
|
@ -86,6 +113,8 @@ schedulers = [
|
|||
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
|
||||
Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
|
||||
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
|
||||
Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
|
||||
Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
|
||||
]
|
||||
|
||||
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
|
||||
|
|
Loading…
Reference in New Issue