prevent accidental creation of CLIP models in float32 type when user wants float16
This commit is contained in:
parent
7ee2114cd9
commit
b443fdcf76
|
@ -61,9 +61,9 @@ class SD3Cond(torch.nn.Module):
|
|||
self.tokenizer = SD3Tokenizer()
|
||||
|
||||
with torch.no_grad():
|
||||
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
|
||||
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=torch.float32, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
|
||||
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
|
||||
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
|
||||
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
|
||||
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
|
||||
|
||||
self.weights_loaded = False
|
||||
|
||||
|
|
|
@ -406,6 +406,7 @@ def set_model_fields(model):
|
|||
if not hasattr(model, 'latent_channels'):
|
||||
model.latent_channels = 4
|
||||
|
||||
|
||||
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
|
||||
sd_model_hash = checkpoint_info.calculate_shorthash()
|
||||
timer.record("calculate hash")
|
||||
|
|
Loading…
Reference in New Issue