Merge branch 'master' into fix-vram

This commit is contained in:
Jairo Correa 2022-10-06 13:41:37 -03:00
commit b66aa334a9
12 changed files with 273 additions and 62 deletions

View File

@ -4,6 +4,21 @@ global_progressbars = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_interrupt, id_preview, id_gallery){
var progressbar = gradioApp().getElementById(id_progressbar)
var interrupt = gradioApp().getElementById(id_interrupt)
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
if(progressbar.innerText){
let newtitle = 'Stable Diffusion - ' + progressbar.innerText
if(document.title != newtitle){
document.title = newtitle;
}
}else{
let newtitle = 'Stable Diffusion'
if(document.title != newtitle){
document.title = newtitle;
}
}
}
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
global_progressbars[id_progressbar] = progressbar

View File

@ -19,7 +19,7 @@ clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLI
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@ -86,6 +86,15 @@ def git_clone(url, dir, name, commithash=None):
# TODO clone into temporary dir and move if successful
if os.path.exists(dir):
if commithash is None:
return
current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
if current_hash == commithash:
return
run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commint for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")

View File

@ -11,9 +11,8 @@ import cv2
from skimage import exposure
import modules.sd_hijack
from modules import devices, prompt_parser, masking, lowvram
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.face_restoration
@ -110,7 +109,7 @@ class Processed:
self.width = p.width
self.height = p.height
self.sampler_index = p.sampler_index
self.sampler = samplers[p.sampler_index].name
self.sampler = sd_samplers.samplers[p.sampler_index].name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@ -265,7 +264,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params = {
"Steps": p.steps,
"Sampler": samplers[p.sampler_index].name,
"Sampler": sd_samplers.samplers[p.sampler_index].name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@ -360,7 +359,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
#c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_learned_conditioning(shared.sd_model, prompts, p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@ -489,7 +488,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.firstphase_height_truncated = int(scale * self.height)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@ -532,7 +531,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
# GC now before running the next img2img to prevent running out of memory
@ -567,7 +567,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.nmask = None
def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
crop_region = None
if self.image_mask is not None:

View File

@ -1,6 +1,6 @@
import re
from collections import namedtuple
from typing import List
import lark
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
@ -97,10 +97,26 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
def get_learned_conditioning(model, prompts, steps):
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
and the sampling step at which this condition is to be replaced by the next one.
Input:
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
Output:
[
[
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
],
[
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
]
]
"""
res = []
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
@ -123,13 +139,75 @@ def get_learned_conditioning(model, prompts, steps):
cache[prompt] = cond_schedule
res.append(cond_schedule)
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
return res
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
param = c.schedules[0][0].cond
res = torch.zeros(c.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c.schedules):
re_AND = re.compile(r"\bAND\b")
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
def get_multicond_prompt_list(prompts):
res_indexes = []
prompt_flat_list = []
prompt_indexes = {}
for prompt in prompts:
subprompts = re_AND.split(prompt)
indexes = []
for subprompt in subprompts:
match = re_weight.search(subprompt)
text, weight = match.groups() if match is not None else (subprompt, 1.0)
weight = float(weight) if weight is not None else 1.0
index = prompt_indexes.get(text, None)
if index is None:
index = len(prompt_flat_list)
prompt_flat_list.append(text)
prompt_indexes[text] = index
indexes.append((index, weight))
res_indexes.append(indexes)
return res_indexes, prompt_flat_list, prompt_indexes
class ComposableScheduledPromptConditioning:
def __init__(self, schedules, weight=1.0):
self.schedules: List[ScheduledPromptConditioning] = schedules
self.weight: float = weight
class MulticondLearnedConditioning:
def __init__(self, shape, batch):
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
For each prompt, the list is obtained by splitting the prompt using the AND separator.
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
"""
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
res = []
for indexes in res_indexes:
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
param = c[0][0].cond
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c):
target_index = 0
for current, (end_at, cond) in enumerate(cond_schedule):
if current_step <= end_at:
@ -140,6 +218,30 @@ def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
return res
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
param = c.batch[0][0].schedules[0].cond
tensors = []
conds_list = []
for batch_no, composable_prompts in enumerate(c.batch):
conds_for_batch = []
for cond_index, composable_prompt in enumerate(composable_prompts):
target_index = 0
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
if current_step <= end_at:
target_index = current
break
conds_for_batch.append((len(tensors), composable_prompt.weight))
tensors.append(composable_prompt.schedules[target_index].cond)
conds_list.append(conds_for_batch)
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
re_attention = re.compile(r"""
\\\(|
\\\)|

View File

@ -13,31 +13,57 @@ from modules.shared import opts, cmd_opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases'])
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a']),
('Euler', 'sample_euler', ['k_euler']),
('LMS', 'sample_lms', ['k_lms']),
('Heun', 'sample_heun', ['k_heun']),
('DPM2', 'sample_dpm_2', ['k_dpm_2']),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases)
for label, funcname, aliases in samplers_k_diffusion
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
samplers = [
all_samplers = [
*samplers_data_k_diffusion,
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
samplers_for_img2img = [x for x in samplers if x.name not in ['PLMS', 'DPM fast', 'DPM adaptive']]
samplers = []
samplers_for_img2img = []
def create_sampler_with_index(list_of_configs, index, model):
config = list_of_configs[index]
sampler = config.constructor(model)
sampler.config = config
return sampler
def set_samplers():
global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
set_samplers()
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
@ -104,14 +130,18 @@ class VanillaStableDiffusionSampler:
self.step = 0
self.eta = None
self.default_eta = 0.0
self.config = None
def number_of_needed_noises(self, p):
return 0
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
@ -183,19 +213,31 @@ class CFGDenoiser(torch.nn.Module):
self.step = 0
def forward(self, x, sigma, uncond, cond, cond_scale):
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
denoised = uncond + (cond - uncond) * cond_scale
x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
else:
uncond = self.inner_model(x, sigma, cond=uncond)
cond = self.inner_model(x, sigma, cond=cond)
denoised = uncond + (cond - uncond) * cond_scale
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
denoised_uncond = x_out[-batch_size:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
@ -250,6 +292,7 @@ class KDiffusionSampler:
self.stop_at = None
self.eta = None
self.default_eta = 1.0
self.config = None
def callback_state(self, d):
store_latent(d["denoised"])
@ -314,9 +357,12 @@ class KDiffusionSampler:
steps = steps or p.steps
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
sigmas = self.model_wrap.get_sigmas(steps)
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)

View File

@ -13,6 +13,7 @@ import modules.memmon
import modules.sd_models
import modules.styles
import modules.devices as devices
from modules import sd_samplers
from modules.paths import script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
@ -55,7 +56,7 @@ parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide dire
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="color-sketch")
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
@ -235,17 +236,20 @@ options_templates.update(options_section(('ui', "User interface"), {
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
}))
class Options:
data = None
data_labels = options_templates

View File

@ -1,5 +1,7 @@
import os
from PIL import Image, ImageOps
import platform
import sys
import tqdm
from modules import shared, images
@ -10,7 +12,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
assert src != dst, 'same directory specified as source and desitnation'
assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
@ -25,6 +27,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
def save_pic_with_caption(image, index):
if process_caption:
caption = "-" + shared.interrogator.generate_caption(image)
caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
else:
caption = filename
caption = os.path.splitext(caption)[0]
@ -75,3 +78,27 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
if process_caption:
shared.interrogator.send_blip_to_ram()
def sanitize_caption(base_path, original_caption, suffix):
operating_system = platform.system().lower()
if (operating_system == "windows"):
invalid_path_characters = "\\/:*?\"<>|"
max_path_length = 259
else:
invalid_path_characters = "/" #linux/macos
max_path_length = 1023
caption = original_caption
for invalid_character in invalid_path_characters:
caption = caption.replace(invalid_character, "")
fixed_path_length = len(base_path) + len(suffix)
if fixed_path_length + len(caption) <= max_path_length:
return caption
caption_tokens = caption.split()
new_caption = ""
for token in caption_tokens:
last_caption = new_caption
new_caption = new_caption + token + " "
if (len(new_caption) + fixed_path_length - 1 > max_path_length):
break
print(f"\nPath will be too long. Truncated caption: {original_caption}\nto: {last_caption}", file=sys.stderr)
return last_caption.strip()

View File

@ -34,7 +34,7 @@ import modules.gfpgan_model
import modules.codeformer_model
import modules.styles
import modules.generation_parameters_copypaste
from modules.prompt_parser import get_learned_conditioning_prompt_schedules
from modules import prompt_parser
from modules.images import apply_filename_pattern, get_next_sequence_number
import modules.textual_inversion.ui
@ -394,7 +394,9 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
def update_token_counter(text, steps):
try:
prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps)
_, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text])
prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps)
except Exception:
# a parsing error can happen here during typing, and we don't want to bother the user with
# messages related to it in console
@ -1210,6 +1212,7 @@ def create_ui(wrap_gradio_gpu_call):
)
def request_restart():
shared.state.interrupt()
settings_interface.gradio_ref.do_restart = True
restart_gradio.click(

View File

@ -8,7 +8,6 @@ import gradio as gr
from modules import processing, shared, sd_samplers, prompt_parser
from modules.processing import Processed
from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
import torch
@ -159,7 +158,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
sampler = samplers[p.sampler_index].constructor(p.sd_model)
sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)

View File

@ -85,8 +85,11 @@ def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.0
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
# create a generator with a static seed to make outpainting deterministic / only follow global seed
rng = np.random.default_rng(0)
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
noise_rgb = np.random.random_sample((width, height, num_channels))
noise_rgb = rng.random((width, height, num_channels))
noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range(num_channels):

View File

@ -1,8 +1,9 @@
from collections import namedtuple
from copy import copy
from itertools import permutations
from itertools import permutations, chain
import random
import csv
from io import StringIO
from PIL import Image
import numpy as np
@ -168,7 +169,6 @@ re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
class Script(scripts.Script):
def title(self):
return "X/Y plot"
@ -197,7 +197,7 @@ class Script(scripts.Script):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in vals.split(",")]
valslist = list(map(str.strip,chain.from_iterable(csv.reader(StringIO(vals)))))
if opt.type == int:
valslist_ext = []

View File

@ -2,11 +2,12 @@ import os
import threading
import time
import importlib
from modules import devices
from modules.paths import script_path
import signal
import threading
from modules.paths import script_path
from modules import devices, sd_samplers
import modules.codeformer_model as codeformer
import modules.extras
import modules.face_restoration
@ -109,6 +110,8 @@ def webui():
time.sleep(0.5)
break
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
print('Reloading modules: modules.ui')