From c65909ad16a1962129114c6251de092f49479b06 Mon Sep 17 00:00:00 2001 From: Philpax Date: Mon, 2 Jan 2023 12:21:22 +1100 Subject: [PATCH] feat(api): return more data for embeddings --- modules/api/api.py | 17 +++++++++++++++-- modules/api/models.py | 11 +++++++++-- modules/textual_inversion/textual_inversion.py | 8 ++++---- 3 files changed, 28 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 30bf3dac5..9c670f006 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -330,9 +330,22 @@ class Api: def get_embeddings(self): db = sd_hijack.model_hijack.embedding_db + + def convert_embedding(embedding): + return { + "step": embedding.step, + "sd_checkpoint": embedding.sd_checkpoint, + "sd_checkpoint_name": embedding.sd_checkpoint_name, + "shape": embedding.shape, + "vectors": embedding.vectors, + } + + def convert_embeddings(embeddings): + return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()} + return { - "loaded": sorted(db.word_embeddings.keys()), - "skipped": sorted(db.skipped_embeddings), + "loaded": convert_embeddings(db.word_embeddings), + "skipped": convert_embeddings(db.skipped_embeddings), } def refresh_checkpoints(self): diff --git a/modules/api/models.py b/modules/api/models.py index a8472dc9d..4a632c685 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -249,6 +249,13 @@ class ArtistItem(BaseModel): score: float = Field(title="Score") category: str = Field(title="Category") +class EmbeddingItem(BaseModel): + step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") + sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") + sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") + shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") + vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") + class EmbeddingsResponse(BaseModel): - loaded: List[str] = Field(title="Loaded", description="Embeddings loaded for the current model") - skipped: List[str] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file + loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 1e5722e74..fd2534776 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -59,7 +59,7 @@ class EmbeddingDatabase: def __init__(self, embeddings_dir): self.ids_lookup = {} self.word_embeddings = {} - self.skipped_embeddings = [] + self.skipped_embeddings = {} self.dir_mtime = None self.embeddings_dir = embeddings_dir self.expected_shape = -1 @@ -91,7 +91,7 @@ class EmbeddingDatabase: self.dir_mtime = mt self.ids_lookup.clear() self.word_embeddings.clear() - self.skipped_embeddings = [] + self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() def process_file(path, filename): @@ -136,7 +136,7 @@ class EmbeddingDatabase: if self.expected_shape == -1 or self.expected_shape == embedding.shape: self.register_embedding(embedding, shared.sd_model) else: - self.skipped_embeddings.append(name) + self.skipped_embeddings[name] = embedding for fn in os.listdir(self.embeddings_dir): try: @@ -153,7 +153,7 @@ class EmbeddingDatabase: print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") if len(self.skipped_embeddings) > 0: - print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings)}") + print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") def find_embedding_at_position(self, tokens, offset): token = tokens[offset]