Merge pull request #14477 from akx/spandrel-type-fix

Be more clear about Spandrel model nomenclature and types
This commit is contained in:
AUTOMATIC1111 2023-12-31 01:38:43 +03:00 committed by GitHub
commit ce21840a04
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 26 additions and 21 deletions

View File

@ -71,7 +71,7 @@ class UpscalerSwinIR(Upscaler):
else:
filename = path
model = modelloader.load_spandrel_model(
model_descriptor = modelloader.load_spandrel_model(
filename,
device=self._get_device(),
dtype=devices.dtype,
@ -79,10 +79,10 @@ class UpscalerSwinIR(Upscaler):
)
if getattr(opts, 'SWIN_torch_compile', False):
try:
model = torch.compile(model)
model_descriptor.model.compile()
except Exception:
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
return model
return model_descriptor
def _get_device(self):
return devices.get_device_for('swinir')

View File

@ -3,6 +3,8 @@ from __future__ import annotations
import logging
import os
import torch
from modules import (
devices,
errors,
@ -25,7 +27,7 @@ class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
def get_device(self):
return devices.device_gfpgan
def load_net(self) -> None:
def load_net(self) -> torch.Module:
for model_path in modelloader.load_models(
model_path=self.model_path,
model_url=model_url,
@ -34,13 +36,13 @@ class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
ext_filter=['.pth'],
):
if 'GFPGAN' in os.path.basename(model_path):
net = modelloader.load_spandrel_model(
model = modelloader.load_spandrel_model(
model_path,
device=self.get_device(),
expected_architecture='GFPGAN',
).model
net.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
return net
model.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
return model
raise ValueError("No GFPGAN model found")
def restore(self, np_image):

View File

@ -1,8 +1,9 @@
from __future__ import annotations
import importlib
import logging
import os
import importlib
from typing import TYPE_CHECKING
from urllib.parse import urlparse
import torch
@ -10,6 +11,8 @@ import torch
from modules import shared
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
if TYPE_CHECKING:
import spandrel
logger = logging.getLogger(__name__)
@ -140,19 +143,19 @@ def load_spandrel_model(
*,
device: str | torch.device | None,
half: bool = False,
dtype: str | None = None,
dtype: str | torch.dtype | None = None,
expected_architecture: str | None = None,
):
) -> spandrel.ModelDescriptor:
import spandrel
model = spandrel.ModelLoader(device=device).load_from_file(path)
if expected_architecture and model.architecture != expected_architecture:
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(path)
if expected_architecture and model_descriptor.architecture != expected_architecture:
logger.warning(
f"Model {path!r} is not a {expected_architecture!r} model (got {model.architecture!r})",
f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})",
)
if half:
model = model.model.half()
model_descriptor.model.half()
if dtype:
model = model.model.to(dtype=dtype)
model.eval()
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", model, path, device, half, dtype)
return model
model_descriptor.model.to(dtype=dtype)
model_descriptor.model.eval()
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", model_descriptor, path, device, half, dtype)
return model_descriptor

View File

@ -36,14 +36,14 @@ class UpscalerRealESRGAN(Upscaler):
errors.report(f"Unable to load RealESRGAN model {path}", exc_info=True)
return img
mod = modelloader.load_spandrel_model(
model_descriptor = modelloader.load_spandrel_model(
info.local_data_path,
device=self.device,
half=(not cmd_opts.no_half and not cmd_opts.upcast_sampling),
expected_architecture="ESRGAN", # "RealESRGAN" isn't a specific thing for Spandrel
)
return upscale_with_model(
mod,
model_descriptor,
img,
tile_size=opts.ESRGAN_tile,
tile_overlap=opts.ESRGAN_tile_overlap,

View File

@ -6,7 +6,7 @@ import torch
import tqdm
from PIL import Image
from modules import devices, images
from modules import images
logger = logging.getLogger(__name__)