parent
269833067d
commit
cf0cfefe91
|
@ -186,7 +186,7 @@ class StableDiffusionProcessing:
|
||||||
return conditioning
|
return conditioning
|
||||||
|
|
||||||
def edit_image_conditioning(self, source_image):
|
def edit_image_conditioning(self, source_image):
|
||||||
conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
||||||
|
|
||||||
return conditioning_image
|
return conditioning_image
|
||||||
|
|
||||||
|
|
|
@ -77,9 +77,9 @@ class CFGDenoiser(torch.nn.Module):
|
||||||
batch_size = len(conds_list)
|
batch_size = len(conds_list)
|
||||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||||
|
|
||||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
||||||
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
|
||||||
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [image_cond])
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
||||||
|
|
||||||
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
||||||
cfg_denoiser_callback(denoiser_params)
|
cfg_denoiser_callback(denoiser_params)
|
||||||
|
@ -88,7 +88,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||||
sigma_in = denoiser_params.sigma
|
sigma_in = denoiser_params.sigma
|
||||||
|
|
||||||
if tensor.shape[1] == uncond.shape[1]:
|
if tensor.shape[1] == uncond.shape[1]:
|
||||||
cond_in = torch.cat([tensor, uncond, uncond])
|
cond_in = torch.cat([tensor, uncond])
|
||||||
|
|
||||||
if shared.batch_cond_uncond:
|
if shared.batch_cond_uncond:
|
||||||
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
|
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
|
||||||
|
|
Loading…
Reference in New Issue