rework hypertile into a built-in extension

This commit is contained in:
AUTOMATIC1111 2023-11-26 10:51:45 +03:00
parent 3a9bf4ac10
commit d2e0c1ca13
5 changed files with 183 additions and 151 deletions

View File

@ -174,5 +174,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- LyCORIS - KohakuBlueleaf - LyCORIS - KohakuBlueleaf
- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling - Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling
- Hypertile - tfernd - https://github.com/tfernd/HyperTile
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You) - (You)

View File

@ -1,10 +1,13 @@
""" """
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE
Warn: The patch works well only if the input image has a width and height that are multiples of 128 Warn: The patch works well only if the input image has a width and height that are multiples of 128
Author : @tfernd Github : https://github.com/tfernd/HyperTile Original author: @tfernd Github: https://github.com/tfernd/HyperTile
""" """
from __future__ import annotations from __future__ import annotations
import functools
from dataclasses import dataclass
from typing import Callable from typing import Callable
from typing_extensions import Literal from typing_extensions import Literal
@ -18,6 +21,19 @@ import random
from einops import rearrange from einops import rearrange
@dataclass
class HypertileParams:
depth = 0
layer_name = ""
tile_size: int = 0
swap_size: int = 0
aspect_ratio: float = 1.0
forward = None
enabled = False
# TODO add SD-XL layers # TODO add SD-XL layers
DEPTH_LAYERS = { DEPTH_LAYERS = {
0: [ 0: [
@ -176,6 +192,7 @@ DEPTH_LAYERS_XL = {
RNG_INSTANCE = random.Random() RNG_INSTANCE = random.Random()
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
""" """
Returns a random divisor of value that Returns a random divisor of value that
@ -193,9 +210,12 @@ def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
return ns[idx] return ns[idx]
def set_hypertile_seed(seed: int) -> None: def set_hypertile_seed(seed: int) -> None:
RNG_INSTANCE.seed(seed) RNG_INSTANCE.seed(seed)
@functools.cache
def largest_tile_size_available(width: int, height: int) -> int: def largest_tile_size_available(width: int, height: int) -> int:
""" """
Calculates the largest tile size available for a given width and height Calculates the largest tile size available for a given width and height
@ -207,6 +227,7 @@ def largest_tile_size_available(width:int, height:int) -> int:
largest_tile_size_available *= 2 largest_tile_size_available *= 2
return largest_tile_size_available return largest_tile_size_available
def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]:
""" """
Finds h and w such that h*w = hw and h/w = aspect_ratio Finds h and w such that h*w = hw and h/w = aspect_ratio
@ -219,6 +240,7 @@ def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]:
closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio
return closest_pair return closest_pair
@cache @cache
def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]:
""" """
@ -240,44 +262,28 @@ def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]:
w = int(w_candidate) w = int(w_candidate)
return h, w return h, w
@contextmanager
def split_attention(
layer: nn.Module,
/,
aspect_ratio: float, # width/height
tile_size: int = 128, # 128 for VAE
swap_size: int = 1, # 1 for VAE
*,
disable: bool = False,
max_depth: Literal[0, 1, 2, 3] = 0, # ! Try 0 or 1
scale_depth: bool = True, # scale the tile-size depending on the depth
is_sdxl: bool = False, # is the model SD-XL
):
# Hijacks AttnBlock from ldm and Attention from diffusers
if disable: def self_attn_forward(params: HypertileParams, scale_depth=True) -> Callable:
logging.info(f"Attention for {layer.__class__.__qualname__} not splitted")
yield
return
latent_tile_size = max(128, tile_size) // 8 @wraps(params.forward)
def self_attn_forward(forward: Callable, depth: int, layer_name: str, module: nn.Module) -> Callable:
@wraps(forward)
def wrapper(*args, **kwargs): def wrapper(*args, **kwargs):
if not params.enabled:
return params.forward(*args, **kwargs)
latent_tile_size = max(128, params.tile_size) // 8
x = args[0] x = args[0]
# VAE # VAE
if x.ndim == 4: if x.ndim == 4:
b, c, h, w = x.shape b, c, h, w = x.shape
nh = random_divisor(h, latent_tile_size, swap_size) nh = random_divisor(h, latent_tile_size, params.swap_size)
nw = random_divisor(w, latent_tile_size, swap_size) nw = random_divisor(w, latent_tile_size, params.swap_size)
if nh * nw > 1: if nh * nw > 1:
x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles
out = forward(x, *args[1:], **kwargs) out = params.forward(x, *args[1:], **kwargs)
if nh * nw > 1: if nh * nw > 1:
out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw)
@ -285,19 +291,17 @@ def split_attention(
# U-Net # U-Net
else: else:
hw: int = x.size(1) hw: int = x.size(1)
h, w = find_hw_candidates(hw, aspect_ratio) h, w = find_hw_candidates(hw, params.aspect_ratio)
assert h * w == hw, f"Invalid aspect ratio {aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" assert h * w == hw, f"Invalid aspect ratio {params.aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}"
factor = 2**depth if scale_depth else 1 factor = 2 ** params.depth if scale_depth else 1
nh = random_divisor(h, latent_tile_size * factor, swap_size) nh = random_divisor(h, latent_tile_size * factor, params.swap_size)
nw = random_divisor(w, latent_tile_size * factor, swap_size) nw = random_divisor(w, latent_tile_size * factor, params.swap_size)
module._split_sizes_hypertile.append((nh, nw)) # type: ignore
if nh * nw > 1: if nh * nw > 1:
x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
out = forward(x, *args[1:], **kwargs) out = params.forward(x, *args[1:], **kwargs)
if nh * nw > 1: if nh * nw > 1:
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
@ -307,65 +311,38 @@ def split_attention(
return wrapper return wrapper
# Handle hijacking the forward method and recovering afterwards
try: def hypertile_hook_model(model: nn.Module, width, height, *, enable=False, tile_size_max=128, swap_size=1, max_depth=3, is_sdxl=False):
if is_sdxl: hypertile_layers = getattr(model, "__webui_hypertile_layers", None)
layers = DEPTH_LAYERS_XL if hypertile_layers is None:
else: if not enable:
layers = DEPTH_LAYERS return
for depth in range(max_depth + 1):
for layer_name, module in layer.named_modules(): hypertile_layers = {}
layers = DEPTH_LAYERS_XL if is_sdxl else DEPTH_LAYERS
for depth in range(4):
for layer_name, module in model.named_modules():
if any(layer_name.endswith(try_name) for try_name in layers[depth]): if any(layer_name.endswith(try_name) for try_name in layers[depth]):
# print input shape for debugging params = HypertileParams()
logging.debug(f"HyperTile hijacking attention layer at depth {depth}: {layer_name}") module.__webui_hypertile_params = params
# hijack params.forward = module.forward
module._original_forward_hypertile = module.forward params.depth = depth
module.forward = self_attn_forward(module.forward, depth, layer_name, module) params.layer_name = layer_name
module._split_sizes_hypertile = [] module.forward = self_attn_forward(params)
yield
finally:
for layer_name, module in layer.named_modules():
# remove hijack
if hasattr(module, "_original_forward_hypertile"):
if module._split_sizes_hypertile:
logging.debug(f"layer {layer_name} splitted with ({module._split_sizes_hypertile})")
# recover
module.forward = module._original_forward_hypertile
del module._original_forward_hypertile
del module._split_sizes_hypertile
def hypertile_context_vae(model:nn.Module, aspect_ratio:float, tile_size:int, opts): hypertile_layers[layer_name] = 1
"""
Returns context manager for VAE
"""
enabled = opts.hypertile_split_vae_attn
swap_size = opts.hypertile_swap_size_vae
max_depth = opts.hypertile_max_depth_vae
tile_size_max = opts.hypertile_max_tile_vae
return split_attention(
model,
aspect_ratio=aspect_ratio,
tile_size=min(tile_size, tile_size_max),
swap_size=swap_size,
disable=not enabled,
max_depth=max_depth,
is_sdxl=False,
)
def hypertile_context_unet(model:nn.Module, aspect_ratio:float, tile_size:int, opts, is_sdxl:bool): model.__webui_hypertile_layers = hypertile_layers
"""
Returns context manager for U-Net aspect_ratio = width / height
""" tile_size = min(largest_tile_size_available(width, height), tile_size_max)
enabled = opts.hypertile_split_unet_attn
swap_size = opts.hypertile_swap_size_unet for layer_name, module in model.named_modules():
max_depth = opts.hypertile_max_depth_unet if layer_name in hypertile_layers:
tile_size_max = opts.hypertile_max_tile_unet params = module.__webui_hypertile_params
return split_attention(
model, params.tile_size = tile_size
aspect_ratio=aspect_ratio, params.swap_size = swap_size
tile_size=min(tile_size, tile_size_max), params.aspect_ratio = aspect_ratio
swap_size=swap_size, params.enabled = enable and params.depth <= max_depth
disable=not enabled,
max_depth=max_depth,
is_sdxl=is_sdxl,
)

View File

@ -0,0 +1,73 @@
import hypertile
from modules import scripts, script_callbacks, shared
class ScriptHypertile(scripts.Script):
name = "Hypertile"
def title(self):
return self.name
def show(self, is_img2img):
return scripts.AlwaysVisible
def process(self, p, *args):
hypertile.set_hypertile_seed(p.all_seeds[0])
configure_hypertile(p.width, p.height, enable_unet=shared.opts.hypertile_enable_unet)
def before_hr(self, p, *args):
configure_hypertile(p.hr_upscale_to_x, p.hr_upscale_to_y, enable_unet=shared.opts.hypertile_enable_unet_secondpass or shared.opts.hypertile_enable_unet)
def configure_hypertile(width, height, enable_unet=True):
hypertile.hypertile_hook_model(
shared.sd_model.first_stage_model,
width,
height,
swap_size=shared.opts.hypertile_swap_size_vae,
max_depth=shared.opts.hypertile_max_depth_vae,
tile_size_max=shared.opts.hypertile_max_tile_vae,
enable=shared.opts.hypertile_enable_vae,
)
hypertile.hypertile_hook_model(
shared.sd_model.model,
width,
height,
swap_size=shared.opts.hypertile_swap_size_unet,
max_depth=shared.opts.hypertile_max_depth_unet,
tile_size_max=shared.opts.hypertile_max_tile_unet,
enable=enable_unet,
is_sdxl=shared.sd_model.is_sdxl
)
def on_ui_settings():
import gradio as gr
options = {
"hypertile_explanation": shared.OptionHTML("""
<a href='https://github.com/tfernd/HyperTile'>Hypertile</a> optimizes the self-attention layer within U-Net and VAE models,
resulting in a reduction in computation time ranging from 1 to 4 times. The larger the generated image is, the greater the
benefit.
"""),
"hypertile_enable_unet": shared.OptionInfo(False, "Enable Hypertile U-Net").info("noticeable change in details of the generated picture; if enabled, overrides the setting below"),
"hypertile_enable_unet_secondpass": shared.OptionInfo(False, "Enable Hypertile U-Net for hires fix second pass"),
"hypertile_max_depth_unet": shared.OptionInfo(3, "Hypertile U-Net max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}),
"hypertile_max_tile_unet": shared.OptionInfo(256, "Hypertile U-net max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"hypertile_swap_size_unet": shared.OptionInfo(3, "Hypertile U-net swap size", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}),
"hypertile_enable_vae": shared.OptionInfo(False, "Enable Hypertile VAE").info("minimal change in the generated picture"),
"hypertile_max_depth_vae": shared.OptionInfo(3, "Hypertile VAE max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}),
"hypertile_max_tile_vae": shared.OptionInfo(128, "Hypertile VAE max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"hypertile_swap_size_vae": shared.OptionInfo(3, "Hypertile VAE swap size ", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}),
}
for name, opt in options.items():
opt.section = ('hypertile', "Hypertile")
shared.opts.add_option(name, opt)
script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -24,7 +24,6 @@ from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
import modules.paths as paths import modules.paths as paths
import modules.face_restoration import modules.face_restoration
from modules.hypertile import set_hypertile_seed, largest_tile_size_available, hypertile_context_unet, hypertile_context_vae
import modules.images as images import modules.images as images
import modules.styles import modules.styles
import modules.sd_models as sd_models import modules.sd_models as sd_models
@ -861,8 +860,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.comment(comment) p.comment(comment)
p.extra_generation_params.update(model_hijack.extra_generation_params) p.extra_generation_params.update(model_hijack.extra_generation_params)
set_hypertile_seed(p.seed)
# add batch size + hypertile status to information to reproduce the run
if p.n_iter > 1: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
@ -874,7 +872,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else: else:
if opts.sd_vae_decode_method != 'Full': if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
with hypertile_context_vae(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), opts=shared.opts):
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.stack(x_samples_ddim).float()
@ -1141,25 +1138,23 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
aspect_ratio = self.width / self.height
x = self.rng.next() x = self.rng.next()
tile_size = largest_tile_size_available(self.width, self.height)
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x del x
if not self.enable_hr: if not self.enable_hr:
return samples return samples
devices.torch_gc() devices.torch_gc()
if self.latent_scale_mode is None: if self.latent_scale_mode is None:
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
else: else:
decoded_samples = None decoded_samples = None
with sd_models.SkipWritingToConfig(): with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=self.hr_checkpoint_info) sd_models.reload_model_weights(info=self.hr_checkpoint_info)
return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
@ -1244,17 +1239,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.scripts is not None: if self.scripts is not None:
self.scripts.before_hr(self) self.scripts.before_hr(self)
tile_size = largest_tile_size_available(target_width, target_height)
aspect_ratio = self.width / self.height
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
self.sampler = None self.sampler = None
devices.torch_gc() devices.torch_gc()
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
self.is_hr_pass = False self.is_hr_pass = False
@ -1532,10 +1524,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.initial_noise_multiplier != 1.0: if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
x *= self.initial_noise_multiplier x *= self.initial_noise_multiplier
aspect_ratio = self.width / self.height
tile_size = largest_tile_size_available(self.width, self.height)
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None: if self.mask is not None:

View File

@ -200,14 +200,6 @@ options_templates.update(options_section(('optimizations', "Optimizations"), {
"pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"), "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"), "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"), "batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
"hypertile_split_unet_attn" : OptionInfo(False, "Split attention in Unet with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
"hypertile_split_vae_attn": OptionInfo(False, "Split attention in VAE with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
"hypertile_max_depth_vae" : OptionInfo(3, "Max depth for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
"hypertile_max_depth_unet" : OptionInfo(3, "Max depth for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
"hypertile_max_tile_vae" : OptionInfo(128, "Max tile size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
"hypertile_max_tile_unet" : OptionInfo(256, "Max tile size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
"hypertile_swap_size_unet": OptionInfo(3, "Swap size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
"hypertile_swap_size_vae": OptionInfo(3, "Swap size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
})) }))
options_templates.update(options_section(('compatibility', "Compatibility"), { options_templates.update(options_section(('compatibility', "Compatibility"), {