Add fixes for PyTorch 1.12.1

Fix typo "MasOS" -> "macOS"

If MPS is available and PyTorch is an earlier version than 1.13:
* Monkey patch torch.Tensor.to to ensure all tensors sent to MPS are contiguous
* Monkey patch torch.nn.functional.layer_norm to ensure input tensor is contiguous (required for this program to work with MPS on unmodified PyTorch 1.12.1)
This commit is contained in:
brkirch 2022-11-17 03:52:17 -05:00
parent a5106a7cdc
commit e247b7400a
1 changed files with 27 additions and 1 deletions

View File

@ -2,9 +2,10 @@ import sys, os, shlex
import contextlib import contextlib
import torch import torch
from modules import errors from modules import errors
from packaging import version
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. # has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility # check `getattr` and try it for compatibility
def has_mps() -> bool: def has_mps() -> bool:
if not getattr(torch, 'has_mps', False): if not getattr(torch, 'has_mps', False):
@ -94,3 +95,28 @@ def autocast(disable=False):
return contextlib.nullcontext() return contextlib.nullcontext()
return torch.autocast("cuda") return torch.autocast("cuda")
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix