Merge pull request #9737 from AdjointOperator/master
add tiled inference support for ScuNET
This commit is contained in:
commit
e55cb92067
|
@ -5,11 +5,15 @@ import traceback
|
||||||
import PIL.Image
|
import PIL.Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import devices, modelloader
|
from modules import devices, modelloader
|
||||||
from scunet_model_arch import SCUNet as net
|
from scunet_model_arch import SCUNet as net
|
||||||
|
from modules.shared import opts
|
||||||
|
from modules import images
|
||||||
|
|
||||||
|
|
||||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
|
@ -42,28 +46,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
scalers.append(scaler_data2)
|
scalers.append(scaler_data2)
|
||||||
self.scalers = scalers
|
self.scalers = scalers
|
||||||
|
|
||||||
def do_upscale(self, img: PIL.Image, selected_file):
|
@staticmethod
|
||||||
|
@torch.no_grad()
|
||||||
|
def tiled_inference(img, model):
|
||||||
|
# test the image tile by tile
|
||||||
|
h, w = img.shape[2:]
|
||||||
|
tile = opts.SCUNET_tile
|
||||||
|
tile_overlap = opts.SCUNET_tile_overlap
|
||||||
|
if tile == 0:
|
||||||
|
return model(img)
|
||||||
|
|
||||||
|
device = devices.get_device_for('scunet')
|
||||||
|
assert tile % 8 == 0, "tile size should be a multiple of window_size"
|
||||||
|
sf = 1
|
||||||
|
|
||||||
|
stride = tile - tile_overlap
|
||||||
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||||
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||||
|
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
|
||||||
|
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
||||||
|
|
||||||
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
|
||||||
|
for h_idx in h_idx_list:
|
||||||
|
|
||||||
|
for w_idx in w_idx_list:
|
||||||
|
|
||||||
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||||
|
|
||||||
|
out_patch = model(in_patch)
|
||||||
|
out_patch_mask = torch.ones_like(out_patch)
|
||||||
|
|
||||||
|
E[
|
||||||
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||||
|
].add_(out_patch)
|
||||||
|
W[
|
||||||
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||||
|
].add_(out_patch_mask)
|
||||||
|
pbar.update(1)
|
||||||
|
output = E.div_(W)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
model = self.load_model(selected_file)
|
model = self.load_model(selected_file)
|
||||||
if model is None:
|
if model is None:
|
||||||
|
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
device = devices.get_device_for('scunet')
|
device = devices.get_device_for('scunet')
|
||||||
img = np.array(img)
|
tile = opts.SCUNET_tile
|
||||||
img = img[:, :, ::-1]
|
h, w = img.height, img.width
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
np_img = np.array(img)
|
||||||
img = torch.from_numpy(img).float()
|
np_img = np_img[:, :, ::-1] # RGB to BGR
|
||||||
img = img.unsqueeze(0).to(device)
|
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
|
||||||
|
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
|
||||||
|
|
||||||
with torch.no_grad():
|
if tile > h or tile > w:
|
||||||
output = model(img)
|
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
_img[:, :, :h, :w] = torch_img # pad image
|
||||||
output = 255. * np.moveaxis(output, 0, 2)
|
torch_img = _img
|
||||||
output = output.astype(np.uint8)
|
|
||||||
output = output[:, :, ::-1]
|
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
|
||||||
|
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
||||||
|
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
||||||
|
del torch_img, torch_output
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
return PIL.Image.fromarray(output, 'RGB')
|
|
||||||
|
output = np_output.transpose((1, 2, 0)) # CHW to HWC
|
||||||
|
output = output[:, :, ::-1] # BGR to RGB
|
||||||
|
return PIL.Image.fromarray((output * 255).astype(np.uint8))
|
||||||
|
|
||||||
def load_model(self, path: str):
|
def load_model(self, path: str):
|
||||||
device = devices.get_device_for('scunet')
|
device = devices.get_device_for('scunet')
|
||||||
|
@ -84,4 +138,3 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
|
@ -286,6 +286,8 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||||
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||||
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
|
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
|
||||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
||||||
|
"SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
||||||
|
"SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
||||||
|
|
Loading…
Reference in New Issue