wip incorrect OFT implementation
This commit is contained in:
parent
861cbd5636
commit
ec718f76b5
|
@ -0,0 +1,82 @@
|
||||||
|
import torch
|
||||||
|
import network
|
||||||
|
|
||||||
|
|
||||||
|
class ModuleTypeOFT(network.ModuleType):
|
||||||
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||||
|
if all(x in weights.w for x in ["oft_blocks"]):
|
||||||
|
return NetworkModuleOFT(net, weights)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
||||||
|
class NetworkModuleOFT(network.NetworkModule):
|
||||||
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||||
|
super().__init__(net, weights)
|
||||||
|
|
||||||
|
self.oft_blocks = weights.w["oft_blocks"]
|
||||||
|
self.alpha = weights.w["alpha"]
|
||||||
|
|
||||||
|
self.dim = self.oft_blocks.shape[0]
|
||||||
|
self.num_blocks = self.dim
|
||||||
|
|
||||||
|
#if type(self.alpha) == torch.Tensor:
|
||||||
|
# self.alpha = self.alpha.detach().numpy()
|
||||||
|
|
||||||
|
if "Linear" in self.sd_module.__class__.__name__:
|
||||||
|
self.out_dim = self.sd_module.out_features
|
||||||
|
elif "Conv" in self.sd_module.__class__.__name__:
|
||||||
|
self.out_dim = self.sd_module.out_channels
|
||||||
|
|
||||||
|
self.constraint = self.alpha * self.out_dim
|
||||||
|
self.block_size = self.out_dim // self.num_blocks
|
||||||
|
|
||||||
|
self.oft_multiplier = self.multiplier()
|
||||||
|
|
||||||
|
# replace forward method of original linear rather than replacing the module
|
||||||
|
# self.org_forward = self.sd_module.forward
|
||||||
|
# self.sd_module.forward = self.forward
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2)
|
||||||
|
norm_Q = torch.norm(block_Q.flatten())
|
||||||
|
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||||
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||||
|
I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||||
|
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
||||||
|
|
||||||
|
block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
||||||
|
R = torch.block_diag(*block_R_weighted)
|
||||||
|
|
||||||
|
return R
|
||||||
|
|
||||||
|
def calc_updown(self, orig_weight):
|
||||||
|
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||||
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||||
|
norm_Q = torch.norm(block_Q.flatten())
|
||||||
|
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||||
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||||
|
I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||||
|
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
||||||
|
|
||||||
|
block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
||||||
|
R = torch.block_diag(*block_R_weighted)
|
||||||
|
#R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype)
|
||||||
|
# W = R*W_0
|
||||||
|
updown = orig_weight + R
|
||||||
|
output_shape = [R.size(0), orig_weight.size(1)]
|
||||||
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||||
|
|
||||||
|
# def forward(self, x, y=None):
|
||||||
|
# x = self.org_forward(x)
|
||||||
|
# if self.oft_multiplier == 0.0:
|
||||||
|
# return x
|
||||||
|
|
||||||
|
# R = self.get_weight().to(x.device, dtype=x.dtype)
|
||||||
|
# if x.dim() == 4:
|
||||||
|
# x = x.permute(0, 2, 3, 1)
|
||||||
|
# x = torch.matmul(x, R)
|
||||||
|
# x = x.permute(0, 3, 1, 2)
|
||||||
|
# else:
|
||||||
|
# x = torch.matmul(x, R)
|
||||||
|
# return x
|
|
@ -11,6 +11,7 @@ import network_ia3
|
||||||
import network_lokr
|
import network_lokr
|
||||||
import network_full
|
import network_full
|
||||||
import network_norm
|
import network_norm
|
||||||
|
import network_oft
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
@ -28,6 +29,7 @@ module_types = [
|
||||||
network_full.ModuleTypeFull(),
|
network_full.ModuleTypeFull(),
|
||||||
network_norm.ModuleTypeNorm(),
|
network_norm.ModuleTypeNorm(),
|
||||||
network_glora.ModuleTypeGLora(),
|
network_glora.ModuleTypeGLora(),
|
||||||
|
network_oft.ModuleTypeOFT(),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -183,6 +185,9 @@ def load_network(name, network_on_disk):
|
||||||
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
||||||
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
||||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||||
|
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
||||||
|
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
||||||
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||||
|
|
||||||
# some SD1 Loras also have correct compvis keys
|
# some SD1 Loras also have correct compvis keys
|
||||||
if sd_module is None:
|
if sd_module is None:
|
||||||
|
|
Loading…
Reference in New Issue