Merge branch 'dev' into fix/s-noise

This commit is contained in:
AUTOMATIC1111 2023-08-06 06:25:35 +03:00 committed by GitHub
commit ee75416e3e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 17 additions and 12 deletions

View File

@ -115,7 +115,7 @@ Alternatively, use online services (like Google Colab):
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
@ -123,7 +123,7 @@ sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.

View File

@ -148,7 +148,7 @@ class StableDiffusionProcessing:
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_tmax = opts.data.get('s_tmax', s_tmax or 0) or float('inf') # not representable as a standard ui option
self.s_noise = s_noise if s_noise is not None else opts.data.get('s_noise', 1.0)
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
self.override_settings_restore_afterwards = override_settings_restore_afterwards
@ -368,6 +368,10 @@ class StableDiffusionProcessing:
def parse_extra_network_prompts(self):
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
def save_samples(self) -> bool:
"""Returns whether generated images need to be written to disk"""
return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
@ -823,6 +827,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
def infotext(index=0, use_main_prompt=False):
return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
save_samples = p.save_samples()
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
@ -830,7 +836,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
x_sample = x_sample.astype(np.uint8)
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
if save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
@ -844,16 +850,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
if save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
if save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
text = infotext(i)
@ -861,8 +866,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]) and save_images_if_interrupt:
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
@ -898,7 +902,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
grid.info["parameters"] = text
output_images.insert(0, grid)
index_of_first_image = 1
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
@ -1093,7 +1096,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
def save_intermediate(image, index):
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
if not self.save_samples() or not opts.save_images_before_highres_fix:
return
if not isinstance(image, Image.Image):

View File

@ -385,6 +385,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
"save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."),
}))
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
@ -606,8 +607,9 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
"eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
"eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf"),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'k_sched_type': OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),