use torch_utils.float64
This commit is contained in:
parent
41f66849c7
commit
f015b94176
|
@ -5,13 +5,14 @@ import numpy as np
|
|||
|
||||
from modules import shared
|
||||
from modules.models.diffusion.uni_pc import uni_pc
|
||||
from modules.torch_utils import float64
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
|
||||
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
|
||||
alphas = alphas_cumprod[timesteps]
|
||||
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
|
||||
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(float64(x))
|
||||
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
|
||||
|
||||
|
@ -43,7 +44,7 @@ def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=
|
|||
def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
|
||||
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
|
||||
alphas = alphas_cumprod[timesteps]
|
||||
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
|
||||
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(float64(x))
|
||||
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
|
|
Loading…
Reference in New Issue