diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py index c5cf4afa4..c7b866829 100644 --- a/modules/hypernetwork.py +++ b/modules/hypernetwork.py @@ -4,7 +4,12 @@ import sys import traceback import torch -from modules import devices + +from ldm.util import default +from modules import devices, shared +import torch +from torch import einsum +from einops import rearrange, repeat class HypernetworkModule(torch.nn.Module): @@ -48,15 +53,36 @@ def load_hypernetworks(path): return res -def apply(self, x, context=None, mask=None, original=None): +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads - if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork: - if context.shape[1] == 77 and CrossAttention.noise_cond: - context = context + (torch.randn_like(context) * 0.1) - h_k, h_v = CrossAttention.hypernetwork[context.shape[2]] - k = self.to_k(h_k(context)) - v = self.to_v(h_v(context)) + q = self.to_q(x) + context = default(context, x) + + hypernetwork = shared.selected_hypernetwork() + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is not None: + k = self.to_k(hypernetwork_layers[0](context)) + v = self.to_v(hypernetwork_layers[1](context)) else: k = self.to_k(context) v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index a6fa890c4..d68f89cc2 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -8,7 +8,7 @@ from torch import einsum from torch.nn.functional import silu import modules.textual_inversion.textual_inversion -from modules import prompt_parser, devices, sd_hijack_optimizations, shared +from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork from modules.shared import opts, device, cmd_opts import ldm.modules.attention @@ -20,6 +20,8 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At def apply_optimizations(): + undo_optimizations() + ldm.modules.diffusionmodules.model.nonlinearity = silu if cmd_opts.opt_split_attention_v1: @@ -30,7 +32,7 @@ def apply_optimizations(): def undo_optimizations(): - ldm.modules.attention.CrossAttention.forward = attention_CrossAttention_forward + ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward