parent
108be15500
commit
f89829ec3a
|
@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
|
|||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
# if skip_first_layer because first parameters potentially contain negative values
|
||||
# if i < 1: continue
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
if activation_func in HypernetworkModule.activation_dict:
|
||||
linears.append(HypernetworkModule.activation_dict[activation_func]())
|
||||
else:
|
||||
print("Invalid key {} encountered as activation function!".format(activation_func))
|
||||
# if use_dropout:
|
||||
# linears.append(torch.nn.Dropout(p=0.3))
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
|
||||
self.linear = torch.nn.Sequential(*linears)
|
||||
|
||||
|
@ -115,24 +115,11 @@ class Hypernetwork:
|
|||
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.train()
|
||||
res += layer.trainables()
|
||||
|
||||
return res
|
||||
|
||||
def eval(self):
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.eval()
|
||||
for items in self.weights():
|
||||
items.requires_grad = False
|
||||
|
||||
def train(self):
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.train()
|
||||
for items in self.weights():
|
||||
items.requires_grad = True
|
||||
|
||||
def save(self, filename):
|
||||
state_dict = {}
|
||||
|
||||
|
@ -303,6 +290,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
hypernetwork = shared.loaded_hypernetwork
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
|
||||
last_saved_file = "<none>"
|
||||
|
@ -313,10 +304,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate)
|
||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
hypernetwork.train()
|
||||
for i, entries in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
||||
|
@ -337,9 +328,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
|
||||
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
del loss
|
||||
optimizer.step()
|
||||
mean_loss = losses.mean()
|
||||
if torch.isnan(mean_loss):
|
||||
|
@ -356,10 +346,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
})
|
||||
|
||||
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
||||
torch.cuda.empty_cache()
|
||||
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
||||
with torch.no_grad():
|
||||
hypernetwork.eval()
|
||||
|
||||
optimizer.zero_grad()
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
|
@ -396,8 +385,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
image.save(last_saved_image)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
hypernetwork.train()
|
||||
|
||||
shared.state.job_no = hypernetwork.step
|
||||
|
||||
shared.state.textinfo = f"""
|
||||
|
|
Loading…
Reference in New Issue