rework torchsde._brownian.brownian_interval replacement to use device.randn_local and respect the NV setting.

This commit is contained in:
AUTOMATIC1111 2023-08-03 07:18:55 +03:00
parent 84b6fcd02c
commit fca42949a3
2 changed files with 44 additions and 12 deletions

View File

@ -71,14 +71,17 @@ def enable_tf32():
torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32")
cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
dtype_unet = torch.float16
cpu: torch.device = torch.device("cpu")
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
device_esrgan: torch.device = None
device_codeformer: torch.device = None
dtype: torch.dtype = torch.float16
dtype_vae: torch.dtype = torch.float16
dtype_unet: torch.dtype = torch.float16
unet_needs_upcast = False
@ -94,6 +97,10 @@ nv_rng = None
def randn(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
from modules.shared import opts
manual_seed(seed)
@ -107,7 +114,27 @@ def randn(seed, shape):
return torch.randn(shape, device=device)
def randn_local(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
from modules.shared import opts
if opts.randn_source == "NV":
rng = rng_philox.Generator(seed)
return torch.asarray(rng.randn(shape), device=device)
local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device
local_generator = torch.Generator(local_device).manual_seed(int(seed))
return torch.randn(shape, device=local_device, generator=local_generator).to(device)
def randn_like(x):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
@ -120,6 +147,10 @@ def randn_like(x):
def randn_without_seed(shape):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
@ -132,6 +163,7 @@ def randn_without_seed(shape):
def manual_seed(seed):
"""Set up a global random number generator using the specified seed."""
from modules.shared import opts
if opts.randn_source == "NV":

View File

@ -2,10 +2,8 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@ -85,11 +83,13 @@ class InterruptedException(BaseException):
pass
if opts.randn_source == "CPU":
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()