import base64 import html import io import json import math import mimetypes import os import random import sys import time import traceback import platform import subprocess as sp from functools import reduce import numpy as np import torch from PIL import Image, PngImagePlugin import piexif import gradio as gr import gradio.utils import gradio.routes from modules import sd_hijack, sd_models from modules.paths import script_path from modules.shared import opts, cmd_opts if cmd_opts.deepdanbooru: from modules.deepbooru import get_deepbooru_tags import modules.shared as shared from modules.sd_samplers import samplers, samplers_for_img2img from modules.sd_hijack import model_hijack import modules.ldsr_model import modules.scripts import modules.gfpgan_model import modules.codeformer_model import modules.styles import modules.generation_parameters_copypaste from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui import modules.hypernetworks.ui import modules.images_history as img_his # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') if not cmd_opts.share and not cmd_opts.listen: # fix gradio phoning home gradio.utils.version_check = lambda: None gradio.utils.get_local_ip_address = lambda: '127.0.0.1' if cmd_opts.ngrok != None: import modules.ngrok as ngrok print('ngrok authtoken detected, trying to connect...') ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860) def gr_show(visible=True): return {"visible": visible, "__type__": "update"} sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None css_hide_progressbar = """ .wrap .m-12 svg { display:none!important; } .wrap .m-12::before { content:"Loading..." } .progress-bar { display:none!important; } .meta-text { display:none!important; } """ # Using constants for these since the variation selector isn't visible. # Important that they exactly match script.js for tooltip to work. random_symbol = '\U0001f3b2\ufe0f' # 🎲️ reuse_symbol = '\u267b\ufe0f' # ♻️ art_symbol = '\U0001f3a8' # 🎨 paste_symbol = '\u2199\ufe0f' # ↙ folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 def plaintext_to_html(text): text = "
" + "
\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "
Torch active/reserved: {active_peak}/{reserved_peak} MiB,
Time taken:
{progressbar}
", preview_visibility, image, textinfo_result def check_progress_call_initial(id_part): shared.state.job_count = -1 shared.state.current_latent = None shared.state.current_image = None shared.state.textinfo = None return check_progress_call(id_part) def roll_artist(prompt): allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories]) artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats]) return prompt + ", " + artist.name if prompt != '' else artist.name def visit(x, func, path=""): if hasattr(x, 'children'): for c in x.children: visit(c, func, path) elif x.label is not None: func(path + "/" + str(x.label), x) def add_style(name: str, prompt: str, negative_prompt: str): if name is None: return [gr_show(), gr_show()] style = modules.styles.PromptStyle(name, prompt, negative_prompt) shared.prompt_styles.styles[style.name] = style # Save all loaded prompt styles: this allows us to update the storage format in the future more easily, because we # reserialize all styles every time we save them shared.prompt_styles.save_styles(shared.styles_filename) return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(4)] def apply_styles(prompt, prompt_neg, style1_name, style2_name): prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, [style1_name, style2_name]) prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, [style1_name, style2_name]) return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value="None"), gr.Dropdown.update(value="None")] def interrogate(image): prompt = shared.interrogator.interrogate(image) return gr_show(True) if prompt is None else prompt def interrogate_deepbooru(image): prompt = get_deepbooru_tags(image) return gr_show(True) if prompt is None else prompt def create_seed_inputs(): with gr.Row(): with gr.Box(): with gr.Row(elem_id='seed_row'): seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1) seed.style(container=False) random_seed = gr.Button(random_symbol, elem_id='random_seed') reuse_seed = gr.Button(reuse_symbol, elem_id='reuse_seed') with gr.Box(elem_id='subseed_show_box'): seed_checkbox = gr.Checkbox(label='Extra', elem_id='subseed_show', value=False) # Components to show/hide based on the 'Extra' checkbox seed_extras = [] with gr.Row(visible=False) as seed_extra_row_1: seed_extras.append(seed_extra_row_1) with gr.Box(): with gr.Row(elem_id='subseed_row'): subseed = gr.Number(label='Variation seed', value=-1) subseed.style(container=False) random_subseed = gr.Button(random_symbol, elem_id='random_subseed') reuse_subseed = gr.Button(reuse_symbol, elem_id='reuse_subseed') subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01) with gr.Row(visible=False) as seed_extra_row_2: seed_extras.append(seed_extra_row_2) seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from width", value=0) seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize seed from height", value=0) random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed]) random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed]) def change_visibility(show): return {comp: gr_show(show) for comp in seed_extras} seed_checkbox.change(change_visibility, show_progress=False, inputs=[seed_checkbox], outputs=seed_extras) return seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: gr.Textbox, dummy_component, is_subseed): """ Connects a 'reuse (sub)seed' button's click event so that it copies last used (sub)seed value from generation info the to the seed field. If copying subseed and subseed strength was 0, i.e. no variation seed was used, it copies the normal seed value instead.""" def copy_seed(gen_info_string: str, index): res = -1 try: gen_info = json.loads(gen_info_string) index -= gen_info.get('index_of_first_image', 0) if is_subseed and gen_info.get('subseed_strength', 0) > 0: all_subseeds = gen_info.get('all_subseeds', [-1]) res = all_subseeds[index if 0 <= index < len(all_subseeds) else 0] else: all_seeds = gen_info.get('all_seeds', [-1]) res = all_seeds[index if 0 <= index < len(all_seeds) else 0] except json.decoder.JSONDecodeError as e: if gen_info_string != '': print("Error parsing JSON generation info:", file=sys.stderr) print(gen_info_string, file=sys.stderr) return [res, gr_show(False)] reuse_seed.click( fn=copy_seed, _js="(x, y) => [x, selected_gallery_index()]", show_progress=False, inputs=[generation_info, dummy_component], outputs=[seed, dummy_component] ) def update_token_counter(text, steps): try: _, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text]) prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps) except Exception: # a parsing error can happen here during typing, and we don't want to bother the user with # messages related to it in console prompt_schedules = [[[steps, text]]] flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules) prompts = [prompt_text for step, prompt_text in flat_prompts] tokens, token_count, max_length = max([model_hijack.tokenize(prompt) for prompt in prompts], key=lambda args: args[1]) style_class = ' class="red"' if (token_count > max_length) else "" return f"{token_count}/{max_length}" def create_toprow(is_img2img): id_part = "img2img" if is_img2img else "txt2img" with gr.Row(elem_id="toprow"): with gr.Column(scale=4): with gr.Row(): with gr.Column(scale=80): with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, placeholder="Prompt", lines=2) with gr.Column(scale=1, elem_id="roll_col"): roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0) paste = gr.Button(value=paste_symbol, elem_id="paste") token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") with gr.Column(scale=10, elem_id="style_pos_col"): prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) with gr.Row(): with gr.Column(scale=8): with gr.Row(): negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) with gr.Column(scale=1, elem_id="roll_col"): sh = gr.Button(elem_id="sh", visible=True) with gr.Column(scale=1, elem_id="style_neg_col"): prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) with gr.Column(scale=1): with gr.Row(): skip = gr.Button('Skip', elem_id=f"{id_part}_skip") interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt") submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary') skip.click( fn=lambda: shared.state.skip(), inputs=[], outputs=[], ) interrupt.click( fn=lambda: shared.state.interrupt(), inputs=[], outputs=[], ) with gr.Row(scale=1): if is_img2img: interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") if cmd_opts.deepdanbooru: deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") else: deepbooru = None else: interrogate = None deepbooru = None prompt_style_apply = gr.Button('Apply style', elem_id="style_apply") save_style = gr.Button('Create style', elem_id="style_create") return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button def setup_progressbar(progressbar, preview, id_part, textinfo=None): if textinfo is None: textinfo = gr.HTML(visible=False) check_progress = gr.Button('Check progress', elem_id=f"{id_part}_check_progress", visible=False) check_progress.click( fn=lambda: check_progress_call(id_part), show_progress=False, inputs=[], outputs=[progressbar, preview, preview, textinfo], ) check_progress_initial = gr.Button('Check progress (first)', elem_id=f"{id_part}_check_progress_initial", visible=False) check_progress_initial.click( fn=lambda: check_progress_call_initial(id_part), show_progress=False, inputs=[], outputs=[progressbar, preview, preview, textinfo], ) def apply_setting(key, value): if value is None: return gr.update() if key == "sd_model_checkpoint": ckpt_info = sd_models.get_closet_checkpoint_match(value) if ckpt_info is not None: value = ckpt_info.title else: return gr.update() comp_args = opts.data_labels[key].component_args if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: return valtype = type(opts.data_labels[key].default) oldval = opts.data[key] opts.data[key] = valtype(value) if valtype != type(None) else value if oldval != value and opts.data_labels[key].onchange is not None: opts.data_labels[key].onchange() opts.save(shared.config_filename) return value def create_ui(wrap_gradio_gpu_call): import modules.img2img import modules.txt2img with gr.Blocks(analytics_enabled=False) as txt2img_interface: txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False) dummy_component = gr.Label(visible=False) txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False) with gr.Row(elem_id='txt2img_progress_row'): with gr.Column(scale=1): pass with gr.Column(scale=1): progressbar = gr.HTML(elem_id="txt2img_progressbar") txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) setup_progressbar(progressbar, txt2img_preview, 'txt2img') with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20) sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index") with gr.Group(): width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) enable_hr = gr.Checkbox(label='Highres. fix', value=False) with gr.Row(visible=False) as hr_options: firstphase_width = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass width", value=512) firstphase_height = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass height", value=512) denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) with gr.Row(equal_height=True): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0) seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs() with gr.Group(): custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False) with gr.Column(variant='panel'): with gr.Group(): txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) txt2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='txt2img_gallery').style(grid=4) with gr.Group(): with gr.Row(): save = gr.Button('Save') send_to_img2img = gr.Button('Send to img2img') send_to_inpaint = gr.Button('Send to inpaint') send_to_extras = gr.Button('Send to extras') button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder' open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id) with gr.Row(): do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False) with gr.Row(): download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False) with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) txt2img_args = dict( fn=wrap_gradio_gpu_call(modules.txt2img.txt2img), _js="submit", inputs=[ txt2img_prompt, txt2img_negative_prompt, txt2img_prompt_style, txt2img_prompt_style2, steps, sampler_index, restore_faces, tiling, batch_count, batch_size, cfg_scale, seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, height, width, enable_hr, denoising_strength, firstphase_width, firstphase_height, ] + custom_inputs, outputs=[ txt2img_gallery, generation_info, html_info ], show_progress=False, ) txt2img_prompt.submit(**txt2img_args) submit.click(**txt2img_args) txt_prompt_img.change( fn=modules.images.image_data, inputs=[ txt_prompt_img ], outputs=[ txt2img_prompt, txt_prompt_img ] ) enable_hr.change( fn=lambda x: gr_show(x), inputs=[enable_hr], outputs=[hr_options], ) save.click( fn=wrap_gradio_call(save_files), _js="(x, y, z, w) => [x, y, z, selected_gallery_index()]", inputs=[ generation_info, txt2img_gallery, do_make_zip, html_info, ], outputs=[ download_files, html_info, html_info, html_info, ] ) roll.click( fn=roll_artist, _js="update_txt2img_tokens", inputs=[ txt2img_prompt, ], outputs=[ txt2img_prompt, ] ) txt2img_paste_fields = [ (txt2img_prompt, "Prompt"), (txt2img_negative_prompt, "Negative prompt"), (steps, "Steps"), (sampler_index, "Sampler"), (restore_faces, "Face restoration"), (cfg_scale, "CFG scale"), (seed, "Seed"), (width, "Size-1"), (height, "Size-2"), (batch_size, "Batch size"), (subseed, "Variation seed"), (subseed_strength, "Variation seed strength"), (seed_resize_from_w, "Seed resize from-1"), (seed_resize_from_h, "Seed resize from-2"), (denoising_strength, "Denoising strength"), (enable_hr, lambda d: "Denoising strength" in d), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), (firstphase_width, "First pass size-1"), (firstphase_height, "First pass size-2"), ] txt2img_preview_params = [ txt2img_prompt, txt2img_negative_prompt, steps, sampler_index, cfg_scale, seed, width, height, ] token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter]) with gr.Blocks(analytics_enabled=False) as img2img_interface: img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, token_counter, token_button = create_toprow(is_img2img=True) with gr.Row(elem_id='img2img_progress_row'): img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False) with gr.Column(scale=1): pass with gr.Column(scale=1): progressbar = gr.HTML(elem_id="img2img_progressbar") img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) setup_progressbar(progressbar, img2img_preview, 'img2img') with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode: with gr.TabItem('img2img', id='img2img'): init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool) with gr.TabItem('Inpaint', id='inpaint'): init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA") init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base") init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4) with gr.Row(): mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode") inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index") inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index") with gr.Row(): inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False) inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32) with gr.TabItem('Batch img2img', id='batch'): hidden = 'Process images in a directory on the same machine where the server is running.
Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}
A merger of the two checkpoints will be generated in your checkpoint directory.
") with gr.Row(): primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)") secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)") tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)") custom_name = gr.Textbox(label="Custom Name (Optional)") interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3) interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method") save_as_half = gr.Checkbox(value=False, label="Save as float16") modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') with gr.Column(variant='panel'): submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() with gr.Blocks() as train_interface: with gr.Row().style(equal_height=False): gr.HTML(value="See wiki for detailed explanation.
") with gr.Row().style(equal_height=False): with gr.Tabs(elem_id="train_tabs"): with gr.Tab(label="Create embedding"): new_embedding_name = gr.Textbox(label="Name") initialization_text = gr.Textbox(label="Initialization text", value="*") nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1) with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") with gr.Column(): create_embedding = gr.Button(value="Create embedding", variant='primary') with gr.Tab(label="Create hypernetwork"): new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") with gr.Column(): create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary') with gr.Tab(label="Preprocess images"): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images into two') process_caption = gr.Checkbox(label='Use BLIP for caption') process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False) with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") with gr.Column(): run_preprocess = gr.Button(value="Preprocess", variant='primary') with gr.Tab(label="Train"): gr.HTML(value="Train an embedding; must specify a directory with a set of 1:1 ratio images
") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) with gr.Row(): interrupt_training = gr.Button(value="Interrupt") train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') train_embedding = gr.Button(value="Train Embedding", variant='primary') with gr.Column(): progressbar = gr.HTML(elem_id="ti_progressbar") ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4) ti_preview = gr.Image(elem_id='ti_preview', visible=False) ti_progress = gr.HTML(elem_id="ti_progress", value="") ti_outcome = gr.HTML(elem_id="ti_error", value="") setup_progressbar(progressbar, ti_preview, 'ti', textinfo=ti_progress) create_embedding.click( fn=modules.textual_inversion.ui.create_embedding, inputs=[ new_embedding_name, initialization_text, nvpt, ], outputs=[ train_embedding_name, ti_output, ti_outcome, ] ) create_hypernetwork.click( fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ new_hypernetwork_name, new_hypernetwork_sizes, ], outputs=[ train_hypernetwork_name, ti_output, ti_outcome, ] ) run_preprocess.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", inputs=[ process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru ], outputs=[ ti_output, ti_outcome, ], ) train_embedding.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", inputs=[ train_embedding_name, learn_rate, dataset_directory, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, *txt2img_preview_params, ], outputs=[ ti_output, ti_outcome, ] ) train_hypernetwork.click( fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", inputs=[ train_hypernetwork_name, learn_rate, dataset_directory, log_directory, steps, create_image_every, save_embedding_every, template_file, preview_from_txt2img, *txt2img_preview_params, ], outputs=[ ti_output, ti_outcome, ] ) interrupt_training.click( fn=lambda: shared.state.interrupt(), inputs=[], outputs=[], ) def create_setting_component(key, is_quicksettings=False): def fun(): return opts.data[key] if key in opts.data else opts.data_labels[key].default info = opts.data_labels[key] t = type(info.default) args = info.component_args() if callable(info.component_args) else info.component_args if info.component is not None: comp = info.component elif t == str: comp = gr.Textbox elif t == int: comp = gr.Number elif t == bool: comp = gr.Checkbox else: raise Exception(f'bad options item type: {str(t)} for key {key}') if info.refresh is not None: if is_quicksettings: res = comp(label=info.label, value=fun, **(args or {})) refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_"+key) else: with gr.Row(variant="compact"): res = comp(label=info.label, value=fun, **(args or {})) refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_" + key) def refresh(): info.refresh() refreshed_args = info.component_args() if callable(info.component_args) else info.component_args for k, v in refreshed_args.items(): setattr(res, k, v) return gr.update(**(refreshed_args or {})) refresh_button.click( fn=refresh, inputs=[], outputs=[res], ) else: res = comp(label=info.label, value=fun, **(args or {})) return res components = [] component_dict = {} def open_folder(f): if not os.path.isdir(f): print(f""" WARNING An open_folder request was made with an argument that is not a folder. This could be an error or a malicious attempt to run code on your computer. Requested path was: {f} """, file=sys.stderr) return if not shared.cmd_opts.hide_ui_dir_config: path = os.path.normpath(f) if platform.system() == "Windows": os.startfile(path) elif platform.system() == "Darwin": sp.Popen(["open", path]) else: sp.Popen(["xdg-open", path]) def run_settings(*args): changed = 0 for key, value, comp in zip(opts.data_labels.keys(), args, components): if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default): return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson() for key, value, comp in zip(opts.data_labels.keys(), args, components): if comp == dummy_component: continue comp_args = opts.data_labels[key].component_args if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: continue oldval = opts.data.get(key, None) opts.data[key] = value if oldval != value: if opts.data_labels[key].onchange is not None: opts.data_labels[key].onchange() changed += 1 opts.save(shared.config_filename) return f'{changed} settings changed.', opts.dumpjson() def run_settings_single(value, key): if not opts.same_type(value, opts.data_labels[key].default): return gr.update(visible=True), opts.dumpjson() oldval = opts.data.get(key, None) opts.data[key] = value if oldval != value: if opts.data_labels[key].onchange is not None: opts.data_labels[key].onchange() opts.save(shared.config_filename) return gr.update(value=value), opts.dumpjson() with gr.Blocks(analytics_enabled=False) as settings_interface: settings_submit = gr.Button(value="Apply settings", variant='primary') result = gr.HTML() settings_cols = 3 items_per_col = int(len(opts.data_labels) * 0.9 / settings_cols) quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")] quicksettings_names = set(x for x in quicksettings_names if x != 'quicksettings') quicksettings_list = [] cols_displayed = 0 items_displayed = 0 previous_section = None column = None with gr.Row(elem_id="settings").style(equal_height=False): for i, (k, item) in enumerate(opts.data_labels.items()): if previous_section != item.section: if cols_displayed < settings_cols and (items_displayed >= items_per_col or previous_section is None): if column is not None: column.__exit__() column = gr.Column(variant='panel') column.__enter__() items_displayed = 0 cols_displayed += 1 previous_section = item.section gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='