import dataclasses import torch import k_diffusion import numpy as np from modules import shared def to_d(x, sigma, denoised): """Converts a denoiser output to a Karras ODE derivative.""" return (x - denoised) / sigma k_diffusion.sampling.to_d = to_d @dataclasses.dataclass class Scheduler: name: str label: str function: any default_rho: float = -1 need_inner_model: bool = False aliases: list = None def uniform(n, sigma_min, sigma_max, inner_model, device): return inner_model.get_sigmas(n).to(device) def sgm_uniform(n, sigma_min, sigma_max, inner_model, device): start = inner_model.sigma_to_t(torch.tensor(sigma_max)) end = inner_model.sigma_to_t(torch.tensor(sigma_min)) sigs = [ inner_model.t_to_sigma(ts) for ts in torch.linspace(start, end, n + 1)[:-1] ] sigs += [0.0] return torch.FloatTensor(sigs).to(device) def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device): # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html def loglinear_interp(t_steps, num_steps): """ Performs log-linear interpolation of a given array of decreasing numbers. """ xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) interped_ys = np.exp(new_ys)[::-1].copy() return interped_ys if shared.sd_model.is_sdxl: sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029] else: # Default to SD 1.5 sigmas. sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029] if n != len(sigmas): sigmas = np.append(loglinear_interp(sigmas, n), [0.0]) else: sigmas.append(0.0) return torch.FloatTensor(sigmas).to(device) def kl_optimal(n, sigma_min, sigma_max, device): alpha_min = torch.arctan(torch.tensor(sigma_min, device=device)) alpha_max = torch.arctan(torch.tensor(sigma_max, device=device)) step_indices = torch.arange(n + 1, device=device) sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max) return sigmas def simple_scheduler(n, sigma_min, sigma_max, inner_model, device): sigs = [] ss = len(inner_model.sigmas) / n for x in range(n): sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])] sigs += [0.0] return torch.FloatTensor(sigs).to(device) def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False): start = inner_model.sigma_to_t(torch.tensor(sigma_max)) end = inner_model.sigma_to_t(torch.tensor(sigma_min)) if sgm: timesteps = torch.linspace(start, end, n + 1)[:-1] else: timesteps = torch.linspace(start, end, n) sigs = [] for x in range(len(timesteps)): ts = timesteps[x] sigs.append(inner_model.t_to_sigma(ts)) sigs += [0.0] return torch.FloatTensor(sigs).to(device) def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device): sigs = [] ss = max(len(inner_model.sigmas) // n, 1) x = 1 while x < len(inner_model.sigmas): sigs += [float(inner_model.sigmas[x])] x += ss sigs = sigs[::-1] sigs += [0.0] return torch.FloatTensor(sigs).to(device) schedulers = [ Scheduler('automatic', 'Automatic', None), Scheduler('uniform', 'Uniform', uniform, need_inner_model=True), Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0), Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential), Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0), Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), Scheduler('kl_optimal', 'KL Optimal', kl_optimal), Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas), Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True), Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True), Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True), ] schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}