### This file contains impls for underlying related models (CLIP, T5, etc) import torch import math from torch import nn from transformers import CLIPTokenizer, T5TokenizerFast ################################################################################################# ### Core/Utility ################################################################################################# def attention(q, k, v, heads, mask=None): """Convenience wrapper around a basic attention operation""" b, _, dim_head = q.shape dim_head //= heads q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)] out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) return out.transpose(1, 2).reshape(b, -1, heads * dim_head) class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device) self.act = act_layer self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x ################################################################################################# ### CLIP ################################################################################################# class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device): super().__init__() self.heads = heads self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) def forward(self, x, mask=None): q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x) out = attention(q, k, v, self.heads, mask) return self.out_proj(out) ACTIVATIONS = { "quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), "gelu": torch.nn.functional.gelu, } class CLIPLayer(torch.nn.Module): def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device): super().__init__() self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device) self.self_attn = CLIPAttention(embed_dim, heads, dtype, device) self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device) #self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device) self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device) def forward(self, x, mask=None): x += self.self_attn(self.layer_norm1(x), mask) x += self.mlp(self.layer_norm2(x)) return x class CLIPEncoder(torch.nn.Module): def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device): super().__init__() self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)]) def forward(self, x, mask=None, intermediate_output=None): if intermediate_output is not None: if intermediate_output < 0: intermediate_output = len(self.layers) + intermediate_output intermediate = None for i, layer in enumerate(self.layers): x = layer(x, mask) if i == intermediate_output: intermediate = x.clone() return x, intermediate class CLIPEmbeddings(torch.nn.Module): def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): super().__init__() self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) def forward(self, input_tokens): return self.token_embedding(input_tokens) + self.position_embedding.weight class CLIPTextModel_(torch.nn.Module): def __init__(self, config_dict, dtype, device): num_layers = config_dict["num_hidden_layers"] embed_dim = config_dict["hidden_size"] heads = config_dict["num_attention_heads"] intermediate_size = config_dict["intermediate_size"] intermediate_activation = config_dict["hidden_act"] super().__init__() self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device) def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True): x = self.embeddings(input_tokens) causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output) x = self.final_layer_norm(x) if i is not None and final_layer_norm_intermediate: i = self.final_layer_norm(i) pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] return x, i, pooled_output class CLIPTextModel(torch.nn.Module): def __init__(self, config_dict, dtype, device): super().__init__() self.num_layers = config_dict["num_hidden_layers"] self.text_model = CLIPTextModel_(config_dict, dtype, device) embed_dim = config_dict["hidden_size"] self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) self.text_projection.weight.copy_(torch.eye(embed_dim)) self.dtype = dtype def get_input_embeddings(self): return self.text_model.embeddings.token_embedding def set_input_embeddings(self, embeddings): self.text_model.embeddings.token_embedding = embeddings def forward(self, *args, **kwargs): x = self.text_model(*args, **kwargs) out = self.text_projection(x[2]) return (x[0], x[1], out, x[2]) class SDTokenizer: def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None): self.tokenizer = tokenizer self.max_length = max_length self.min_length = min_length empty = self.tokenizer('')["input_ids"] if has_start_token: self.tokens_start = 1 self.start_token = empty[0] self.end_token = empty[1] else: self.tokens_start = 0 self.start_token = None self.end_token = empty[0] self.pad_with_end = pad_with_end self.pad_to_max_length = pad_to_max_length vocab = self.tokenizer.get_vocab() self.inv_vocab = {v: k for k, v in vocab.items()} self.max_word_length = 8 def tokenize_with_weights(self, text:str): """Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.""" if self.pad_with_end: pad_token = self.end_token else: pad_token = 0 batch = [] if self.start_token is not None: batch.append((self.start_token, 1.0)) to_tokenize = text.replace("\n", " ").split(' ') to_tokenize = [x for x in to_tokenize if x != ""] for word in to_tokenize: batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) batch.append((self.end_token, 1.0)) if self.pad_to_max_length: batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch))) if self.min_length is not None and len(batch) < self.min_length: batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch))) return [batch] class SDXLClipGTokenizer(SDTokenizer): def __init__(self, tokenizer): super().__init__(pad_with_end=False, tokenizer=tokenizer) class SD3Tokenizer: def __init__(self): clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") self.clip_l = SDTokenizer(tokenizer=clip_tokenizer) self.clip_g = SDXLClipGTokenizer(clip_tokenizer) self.t5xxl = T5XXLTokenizer() def tokenize_with_weights(self, text:str): out = {} out["g"] = self.clip_g.tokenize_with_weights(text) out["l"] = self.clip_l.tokenize_with_weights(text) out["t5xxl"] = self.t5xxl.tokenize_with_weights(text) return out class ClipTokenWeightEncoder: def encode_token_weights(self, token_weight_pairs): tokens = [a[0] for a in token_weight_pairs[0]] out, pooled = self([tokens]) if pooled is not None: first_pooled = pooled[0:1].cpu() else: first_pooled = pooled output = [out[0:1]] return torch.cat(output, dim=-2).cpu(), first_pooled class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = ["last", "pooled", "hidden"] def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel, special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True): super().__init__() assert layer in self.LAYERS self.transformer = model_class(textmodel_json_config, dtype, device) self.num_layers = self.transformer.num_layers self.max_length = max_length self.transformer = self.transformer.eval() for param in self.parameters(): param.requires_grad = False self.layer = layer self.layer_idx = None self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407} self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) self.layer_norm_hidden_state = layer_norm_hidden_state self.return_projected_pooled = return_projected_pooled if layer == "hidden": assert layer_idx is not None assert abs(layer_idx) < self.num_layers self.set_clip_options({"layer": layer_idx}) self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled) def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) if layer_idx is None or abs(layer_idx) > self.num_layers: self.layer = "last" else: self.layer = "hidden" self.layer_idx = layer_idx def forward(self, tokens): backup_embeds = self.transformer.get_input_embeddings() tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device) outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) self.transformer.set_input_embeddings(backup_embeds) if self.layer == "last": z = outputs[0] else: z = outputs[1] pooled_output = None if len(outputs) >= 3: if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None: pooled_output = outputs[3].float() elif outputs[2] is not None: pooled_output = outputs[2].float() return z.float(), pooled_output class SDXLClipG(SDClipModel): """Wraps the CLIP-G model into the SD-CLIP-Model interface""" def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None): if layer == "penultimate": layer="hidden" layer_idx=-2 super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) class T5XXLModel(SDClipModel): """Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience""" def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None): super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5) ################################################################################################# ### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl ################################################################################################# class T5XXLTokenizer(SDTokenizer): """Wraps the T5 Tokenizer from HF into the SDTokenizer interface""" def __init__(self): super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) class T5LayerNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None): super().__init__() self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device)) self.variance_epsilon = eps def forward(self, x): variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_epsilon) return self.weight.to(device=x.device, dtype=x.dtype) * x class T5DenseGatedActDense(torch.nn.Module): def __init__(self, model_dim, ff_dim, dtype, device): super().__init__() self.wi_0 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) self.wi_1 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) self.wo = nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) def forward(self, x): hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh") hidden_linear = self.wi_1(x) x = hidden_gelu * hidden_linear x = self.wo(x) return x class T5LayerFF(torch.nn.Module): def __init__(self, model_dim, ff_dim, dtype, device): super().__init__() self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device) self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, x): forwarded_states = self.layer_norm(x) forwarded_states = self.DenseReluDense(forwarded_states) x += forwarded_states return x class T5Attention(torch.nn.Module): def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.k = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.v = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.o = nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device) self.num_heads = num_heads self.relative_attention_bias = None if relative_attention_bias: self.relative_attention_num_buckets = 32 self.relative_attention_max_distance = 128 self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device): """Compute binned relative position bias""" context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward(self, x, past_bias=None): q = self.q(x) k = self.k(x) v = self.v(x) if self.relative_attention_bias is not None: past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device) if past_bias is not None: mask = past_bias out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) return self.o(out), past_bias class T5LayerSelfAttention(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device) self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, x, past_bias=None): output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias) x += output return x, past_bias class T5Block(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() self.layer = torch.nn.ModuleList() self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device)) self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device)) def forward(self, x, past_bias=None): x, past_bias = self.layer[0](x, past_bias) x = self.layer[-1](x) return x, past_bias class T5Stack(torch.nn.Module): def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device): super().__init__() self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device) self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)]) self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True): intermediate = None x = self.embed_tokens(input_ids) past_bias = None for i, layer in enumerate(self.block): x, past_bias = layer(x, past_bias) if i == intermediate_output: intermediate = x.clone() x = self.final_layer_norm(x) if intermediate is not None and final_layer_norm_intermediate: intermediate = self.final_layer_norm(intermediate) return x, intermediate class T5(torch.nn.Module): def __init__(self, config_dict, dtype, device): super().__init__() self.num_layers = config_dict["num_layers"] self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device) self.dtype = dtype def get_input_embeddings(self): return self.encoder.embed_tokens def set_input_embeddings(self, embeddings): self.encoder.embed_tokens = embeddings def forward(self, *args, **kwargs): return self.encoder(*args, **kwargs)