import torch import platform from modules import paths from modules.sd_hijack_utils import CondFunc from packaging import version # has_mps is only available in nightly pytorch (for now) and macOS 12.3+. # check `getattr` and try it for compatibility def check_for_mps() -> bool: if not getattr(torch, 'has_mps', False): return False try: torch.zeros(1).to(torch.device("mps")) return True except Exception: return False has_mps = check_for_mps() # MPS workaround for https://github.com/pytorch/pytorch/issues/89784 def cumsum_fix(input, cumsum_func, *args, **kwargs): if input.device.type == 'mps': output_dtype = kwargs.get('dtype', input.dtype) if output_dtype == torch.int64: return cumsum_func(input.cpu(), *args, **kwargs).to(input.device) elif output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64) return cumsum_func(input, *args, **kwargs) if has_mps: # MPS fix for randn in torchsde CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps') if platform.mac_ver()[0].startswith("13.2."): # MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124) CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760) if version.parse(torch.__version__) < version.parse("1.13"): # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) elif version.parse(torch.__version__) > version.parse("1.13.1"): cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) CondFunc('torch.cumsum', cumsum_fix_func, None) CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) # MPS workaround for https://github.com/pytorch/pytorch/issues/96113 CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')