import json import logging import math import os import sys import hashlib import torch import numpy as np from PIL import Image, ImageOps import random import cv2 from skimage import exposure from typing import Any, Dict, List import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors from modules.sd_hijack import model_hijack from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.paths as paths import modules.face_restoration import modules.images as images import modules.styles import modules.sd_models as sd_models import modules.sd_vae as sd_vae from ldm.data.util import AddMiDaS from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from einops import repeat, rearrange from blendmodes.blend import blendLayers, BlendType # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 def setup_color_correction(image): logging.info("Calibrating color correction.") correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB) return correction_target def apply_color_correction(correction, original_image): logging.info("Applying color correction.") image = Image.fromarray(cv2.cvtColor(exposure.match_histograms( cv2.cvtColor( np.asarray(original_image), cv2.COLOR_RGB2LAB ), correction, channel_axis=2 ), cv2.COLOR_LAB2RGB).astype("uint8")) image = blendLayers(image, original_image, BlendType.LUMINOSITY) return image def apply_overlay(image, paste_loc, index, overlays): if overlays is None or index >= len(overlays): return image overlay = overlays[index] if paste_loc is not None: x, y, w, h = paste_loc base_image = Image.new('RGBA', (overlay.width, overlay.height)) image = images.resize_image(1, image, w, h) base_image.paste(image, (x, y)) image = base_image image = image.convert('RGBA') image.alpha_composite(overlay) image = image.convert('RGB') return image def txt2img_image_conditioning(sd_model, x, width, height): if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models # The "masked-image" in this case will just be all zeros since the entire image is masked. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method)) # Add the fake full 1s mask to the first dimension. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) image_conditioning = image_conditioning.to(x.dtype) return image_conditioning elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device) else: # Dummy zero conditioning if we're not using inpainting or unclip models. # Still takes up a bit of memory, but no encoder call. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) class StableDiffusionProcessing: """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ cached_uc = [None, None] cached_c = [None, None] def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids self.prompt: str = prompt self.prompt_for_display: str = None self.negative_prompt: str = (negative_prompt or "") self.styles: list = styles or [] self.seed: int = seed self.subseed: int = subseed self.subseed_strength: float = subseed_strength self.seed_resize_from_h: int = seed_resize_from_h self.seed_resize_from_w: int = seed_resize_from_w self.sampler_name: str = sampler_name self.batch_size: int = batch_size self.n_iter: int = n_iter self.steps: int = steps self.cfg_scale: float = cfg_scale self.width: int = width self.height: int = height self.restore_faces: bool = restore_faces self.tiling: bool = tiling self.do_not_save_samples: bool = do_not_save_samples self.do_not_save_grid: bool = do_not_save_grid self.extra_generation_params: dict = extra_generation_params or {} self.overlay_images = overlay_images self.eta = eta self.do_not_reload_embeddings = do_not_reload_embeddings self.paste_to = None self.color_corrections = None self.denoising_strength: float = denoising_strength self.sampler_noise_scheduler_override = None self.ddim_discretize = ddim_discretize or opts.ddim_discretize self.s_min_uncond = s_min_uncond or opts.s_min_uncond self.s_churn = s_churn or opts.s_churn self.s_tmin = s_tmin or opts.s_tmin self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option self.s_noise = s_noise or opts.s_noise self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} self.override_settings_restore_afterwards = override_settings_restore_afterwards self.is_using_inpainting_conditioning = False self.disable_extra_networks = False self.token_merging_ratio = 0 self.token_merging_ratio_hr = 0 if not seed_enable_extras: self.subseed = -1 self.subseed_strength = 0 self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 self.scripts = None self.script_args = script_args self.all_prompts = None self.all_negative_prompts = None self.all_seeds = None self.all_subseeds = None self.iteration = 0 self.is_hr_pass = False self.sampler = None self.prompts = None self.negative_prompts = None self.extra_network_data = None self.seeds = None self.subseeds = None self.step_multiplier = 1 self.cached_uc = StableDiffusionProcessing.cached_uc self.cached_c = StableDiffusionProcessing.cached_c self.uc = None self.c = None self.user = None @property def sd_model(self): return shared.sd_model def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height) def depth2img_image_conditioning(self, source_image): # Use the AddMiDaS helper to Format our source image to suit the MiDaS model transformer = AddMiDaS(model_type="dpt_hybrid") transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")}) midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method)) conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), size=conditioning_image.shape[2:], mode="bicubic", align_corners=False, ) (depth_min, depth_max) = torch.aminmax(conditioning) conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. return conditioning def edit_image_conditioning(self, source_image): conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method)) return conditioning_image def unclip_image_conditioning(self, source_image): c_adm = self.sd_model.embedder(source_image) if self.sd_model.noise_augmentor is not None: noise_level = 0 # TODO: Allow other noise levels? c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0])) c_adm = torch.cat((c_adm, noise_level_emb), 1) return c_adm def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None): self.is_using_inpainting_conditioning = True # Handle the different mask inputs if image_mask is not None: if torch.is_tensor(image_mask): conditioning_mask = image_mask else: conditioning_mask = np.array(image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0 conditioning_mask = torch.round(conditioning_mask) else: conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) # Create another latent image, this time with a masked version of the original input. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype) conditioning_image = torch.lerp( source_image, source_image * (1.0 - conditioning_mask), getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) ) # Encode the new masked image using first stage of network. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1) image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1) image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype) return image_conditioning def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): source_image = devices.cond_cast_float(source_image) # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # identify itself with a field common to all models. The conditioning_key is also hybrid. if isinstance(self.sd_model, LatentDepth2ImageDiffusion): return self.depth2img_image_conditioning(source_image) if self.sd_model.cond_stage_key == "edit": return self.edit_image_conditioning(source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) if self.sampler.conditioning_key == "crossattn-adm": return self.unclip_image_conditioning(source_image) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) def init(self, all_prompts, all_seeds, all_subseeds): pass def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): raise NotImplementedError() def close(self): self.sampler = None self.c = None self.uc = None if not opts.experimental_persistent_cond_cache: StableDiffusionProcessing.cached_c = [None, None] StableDiffusionProcessing.cached_uc = [None, None] def get_token_merging_ratio(self, for_hr=False): if for_hr: return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio return self.token_merging_ratio or opts.token_merging_ratio def setup_prompts(self): if type(self.prompt) == list: self.all_prompts = self.prompt else: self.all_prompts = self.batch_size * self.n_iter * [self.prompt] if type(self.negative_prompt) == list: self.all_negative_prompts = self.negative_prompt else: self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt] self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts] self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts] def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data): """ Returns the result of calling function(shared.sd_model, required_prompts, steps) using a cache to store the result if the same arguments have been used before. cache is an array containing two elements. The first element is a tuple representing the previously used arguments, or None if no arguments have been used before. The second element is where the previously computed result is stored. caches is a list with items described above. """ cached_params = ( required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data, opts.sdxl_crop_left, opts.sdxl_crop_top, self.width, self.height, ) for cache in caches: if cache[0] is not None and cached_params == cache[0]: return cache[1] cache = caches[0] with devices.autocast(): cache[1] = function(shared.sd_model, required_prompts, steps) cache[0] = cached_params return cache[1] def setup_conds(self): prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height) negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True) sampler_config = sd_samplers.find_sampler_config(self.sampler_name) self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data) self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data) def parse_extra_network_prompts(self): self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts) class Processed: def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""): self.images = images_list self.prompt = p.prompt self.negative_prompt = p.negative_prompt self.seed = seed self.subseed = subseed self.subseed_strength = p.subseed_strength self.info = info self.comments = comments self.width = p.width self.height = p.height self.sampler_name = p.sampler_name self.cfg_scale = p.cfg_scale self.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.steps = p.steps self.batch_size = p.batch_size self.restore_faces = p.restore_faces self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None self.sd_model_hash = shared.sd_model.sd_model_hash self.seed_resize_from_w = p.seed_resize_from_w self.seed_resize_from_h = p.seed_resize_from_h self.denoising_strength = getattr(p, 'denoising_strength', None) self.extra_generation_params = p.extra_generation_params self.index_of_first_image = index_of_first_image self.styles = p.styles self.job_timestamp = state.job_timestamp self.clip_skip = opts.CLIP_stop_at_last_layers self.token_merging_ratio = p.token_merging_ratio self.token_merging_ratio_hr = p.token_merging_ratio_hr self.eta = p.eta self.ddim_discretize = p.ddim_discretize self.s_churn = p.s_churn self.s_tmin = p.s_tmin self.s_tmax = p.s_tmax self.s_noise = p.s_noise self.s_min_uncond = p.s_min_uncond self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0] self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0] self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1 self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning self.all_prompts = all_prompts or p.all_prompts or [self.prompt] self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt] self.all_seeds = all_seeds or p.all_seeds or [self.seed] self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed] self.infotexts = infotexts or [info] def js(self): obj = { "prompt": self.all_prompts[0], "all_prompts": self.all_prompts, "negative_prompt": self.all_negative_prompts[0], "all_negative_prompts": self.all_negative_prompts, "seed": self.seed, "all_seeds": self.all_seeds, "subseed": self.subseed, "all_subseeds": self.all_subseeds, "subseed_strength": self.subseed_strength, "width": self.width, "height": self.height, "sampler_name": self.sampler_name, "cfg_scale": self.cfg_scale, "steps": self.steps, "batch_size": self.batch_size, "restore_faces": self.restore_faces, "face_restoration_model": self.face_restoration_model, "sd_model_hash": self.sd_model_hash, "seed_resize_from_w": self.seed_resize_from_w, "seed_resize_from_h": self.seed_resize_from_h, "denoising_strength": self.denoising_strength, "extra_generation_params": self.extra_generation_params, "index_of_first_image": self.index_of_first_image, "infotexts": self.infotexts, "styles": self.styles, "job_timestamp": self.job_timestamp, "clip_skip": self.clip_skip, "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning, } return json.dumps(obj) def infotext(self, p: StableDiffusionProcessing, index): return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) def get_token_merging_ratio(self, for_hr=False): return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3 def slerp(val, low, high): low_norm = low/torch.norm(low, dim=1, keepdim=True) high_norm = high/torch.norm(high, dim=1, keepdim=True) dot = (low_norm*high_norm).sum(1) if dot.mean() > 0.9995: return low * val + high * (1 - val) omega = torch.acos(dot) so = torch.sin(omega) res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high return res def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): eta_noise_seed_delta = opts.eta_noise_seed_delta or 0 xs = [] # if we have multiple seeds, this means we are working with batch size>1; this then # enables the generation of additional tensors with noise that the sampler will use during its processing. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to # produce the same images as with two batches [100], [101]. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0): sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] else: sampler_noises = None for i, seed in enumerate(seeds): noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8) subnoise = None if subseeds is not None and subseed_strength != 0: subseed = 0 if i >= len(subseeds) else subseeds[i] subnoise = devices.randn(subseed, noise_shape) # randn results depend on device; gpu and cpu get different results for same seed; # the way I see it, it's better to do this on CPU, so that everyone gets same result; # but the original script had it like this, so I do not dare change it for now because # it will break everyone's seeds. noise = devices.randn(seed, noise_shape) if subnoise is not None: noise = slerp(subseed_strength, noise, subnoise) if noise_shape != shape: x = devices.randn(seed, shape) dx = (shape[2] - noise_shape[2]) // 2 dy = (shape[1] - noise_shape[1]) // 2 w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy tx = 0 if dx < 0 else dx ty = 0 if dy < 0 else dy dx = max(-dx, 0) dy = max(-dy, 0) x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w] noise = x if sampler_noises is not None: cnt = p.sampler.number_of_needed_noises(p) if eta_noise_seed_delta > 0: devices.manual_seed(seed + eta_noise_seed_delta) for j in range(cnt): sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) xs.append(noise) if sampler_noises is not None: p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises] x = torch.stack(xs).to(shared.device) return x class DecodedSamples(list): already_decoded = True def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): samples = DecodedSamples() for i in range(batch.shape[0]): sample = decode_first_stage(model, batch[i:i + 1])[0] if check_for_nans: try: devices.test_for_nans(sample, "vae") except devices.NansException as e: if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision: raise e errors.print_error_explanation( "A tensor with all NaNs was produced in VAE.\n" "Web UI will now convert VAE into 32-bit float and retry.\n" "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n" "To always start with 32-bit VAE, use --no-half-vae commandline flag." ) devices.dtype_vae = torch.float32 model.first_stage_model.to(devices.dtype_vae) batch = batch.to(devices.dtype_vae) sample = decode_first_stage(model, batch[i:i + 1])[0] if target_device is not None: sample = sample.to(target_device) samples.append(sample) return samples def get_fixed_seed(seed): if seed is None or seed == '' or seed == -1: return int(random.randrange(4294967294)) return seed def fix_seed(p): p.seed = get_fixed_seed(p.seed) p.subseed = get_fixed_seed(p.subseed) def program_version(): import launch res = launch.git_tag() if res == "": res = None return res def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None): if index is None: index = position_in_batch + iteration * p.batch_size if all_negative_prompts is None: all_negative_prompts = p.all_negative_prompts clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) enable_hr = getattr(p, 'enable_hr', False) token_merging_ratio = p.get_token_merging_ratio() token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True) uses_ensd = opts.eta_noise_seed_delta != 0 if uses_ensd: uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p) generation_params = { "Steps": p.steps, "Sampler": p.sampler_name, "CFG scale": p.cfg_scale, "Image CFG scale": getattr(p, 'image_cfg_scale', None), "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index], "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": opts.eta_noise_seed_delta if uses_ensd else None, "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio, "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr, "Init image hash": getattr(p, 'init_img_hash', None), "RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, **p.extra_generation_params, "Version": program_version() if opts.add_version_to_infotext else None, "User": p.user if opts.add_user_name_to_info else None, } generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) prompt_text = p.prompt if use_main_prompt else all_prompts[index] negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else "" return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() def process_images(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.before_process(p) stored_opts = {k: opts.data[k] for k in p.override_settings.keys()} try: # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None: p.override_settings.pop('sd_model_checkpoint', None) sd_models.reload_model_weights() for k, v in p.override_settings.items(): setattr(opts, k, v) if k == 'sd_model_checkpoint': sd_models.reload_model_weights() if k == 'sd_vae': sd_vae.reload_vae_weights() sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio()) res = process_images_inner(p) finally: sd_models.apply_token_merging(p.sd_model, 0) # restore opts to original state if p.override_settings_restore_afterwards: for k, v in stored_opts.items(): setattr(opts, k, v) if k == 'sd_vae': sd_vae.reload_vae_weights() return res def process_images_inner(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" if type(p.prompt) == list: assert(len(p.prompt) > 0) else: assert p.prompt is not None devices.torch_gc() seed = get_fixed_seed(p.seed) subseed = get_fixed_seed(p.subseed) modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() comments = {} p.setup_prompts() if type(seed) == list: p.all_seeds = seed else: p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))] if type(subseed) == list: p.all_subseeds = subseed else: p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() if p.scripts is not None: p.scripts.process(p) infotexts = [] output_images = [] with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) # for OSX, loading the model during sampling changes the generated picture, so it is loaded here if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": sd_vae_approx.model() sd_unet.apply_unet() if state.job_count == -1: state.job_count = p.n_iter for n in range(p.n_iter): p.iteration = n if state.skipped: state.skipped = False if state.interrupted: break p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] if p.scripts is not None: p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) if len(p.prompts) == 0: break p.parse_extra_network_prompts() if not p.disable_extra_networks: with devices.autocast(): extra_networks.activate(p, p.extra_network_data) if p.scripts is not None: p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) # params.txt should be saved after scripts.process_batch, since the # infotext could be modified by that callback # Example: a wildcard processed by process_batch sets an extra model # strength, which is saved as "Model Strength: 1.0" in the infotext if n == 0: with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, [], p.seed, "") file.write(processed.infotext(p, 0)) p.setup_conds() for comment in model_hijack.comments: comments[comment] = 1 p.extra_generation_params.update(model_hijack.extra_generation_params) if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) if getattr(samples_ddim, 'already_decoded', False): x_samples_ddim = samples_ddim else: p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) del samples_ddim if lowvram.is_enabled(shared.sd_model): lowvram.send_everything_to_cpu() devices.torch_gc() if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim)) p.scripts.postprocess_batch_list(p, batch_params, batch_number=n) x_samples_ddim = batch_params.images def infotext(index=0, use_main_prompt=False): return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts) for i, x_sample in enumerate(x_samples_ddim): p.batch_index = i x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) if p.restore_faces: if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration: images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration") devices.torch_gc() x_sample = modules.face_restoration.restore_faces(x_sample) devices.torch_gc() image = Image.fromarray(x_sample) if p.scripts is not None: pp = scripts.PostprocessImageArgs(image) p.scripts.postprocess_image(p, pp) image = pp.image if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction") image = apply_color_correction(p.color_corrections[i], image) image = apply_overlay(image, p.paste_to, i, p.overlay_images) if opts.samples_save and not p.do_not_save_samples: images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p) text = infotext(i) infotexts.append(text) if opts.enable_pnginfo: image.info["parameters"] = text output_images.append(image) if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]): image_mask = p.mask_for_overlay.convert('RGB') image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') if opts.save_mask: images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") if opts.save_mask_composite: images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") if opts.return_mask: output_images.append(image_mask) if opts.return_mask_composite: output_images.append(image_mask_composite) del x_samples_ddim devices.torch_gc() state.nextjob() p.color_corrections = None index_of_first_image = 0 unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count: grid = images.image_grid(output_images, p.batch_size) if opts.return_grid: text = infotext(use_main_prompt=True) infotexts.insert(0, text) if opts.enable_pnginfo: grid.info["parameters"] = text output_images.insert(0, grid) index_of_first_image = 1 if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True) if not p.disable_extra_networks and p.extra_network_data: extra_networks.deactivate(p, p.extra_network_data) devices.torch_gc() res = Processed( p, images_list=output_images, seed=p.all_seeds[0], info=infotexts[0], comments="".join(f"{comment}\n" for comment in comments), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts, ) if p.scripts is not None: p.scripts.postprocess(p, res) return res def old_hires_fix_first_pass_dimensions(width, height): """old algorithm for auto-calculating first pass size""" desired_pixel_count = 512 * 512 actual_pixel_count = width * height scale = math.sqrt(desired_pixel_count / actual_pixel_count) width = math.ceil(scale * width / 64) * 64 height = math.ceil(scale * height / 64) * 64 return width, height class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None cached_hr_uc = [None, None] cached_hr_c = [None, None] def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength self.hr_scale = hr_scale self.hr_upscaler = hr_upscaler self.hr_second_pass_steps = hr_second_pass_steps self.hr_resize_x = hr_resize_x self.hr_resize_y = hr_resize_y self.hr_upscale_to_x = hr_resize_x self.hr_upscale_to_y = hr_resize_y self.hr_checkpoint_name = hr_checkpoint_name self.hr_checkpoint_info = None self.hr_sampler_name = hr_sampler_name self.hr_prompt = hr_prompt self.hr_negative_prompt = hr_negative_prompt self.all_hr_prompts = None self.all_hr_negative_prompts = None self.latent_scale_mode = None if firstphase_width != 0 or firstphase_height != 0: self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height self.width = firstphase_width self.height = firstphase_height self.truncate_x = 0 self.truncate_y = 0 self.applied_old_hires_behavior_to = None self.hr_prompts = None self.hr_negative_prompts = None self.hr_extra_network_data = None self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c self.hr_c = None self.hr_uc = None def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: if self.hr_checkpoint_name: self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name) if self.hr_checkpoint_info is None: raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}') self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name: self.extra_generation_params["Hires sampler"] = self.hr_sampler_name if tuple(self.hr_prompt) != tuple(self.prompt): self.extra_generation_params["Hires prompt"] = self.hr_prompt if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt): self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") if self.enable_hr and self.latent_scale_mode is None: if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): raise Exception(f"could not find upscaler named {self.hr_upscaler}") if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): self.hr_resize_x = self.width self.hr_resize_y = self.height self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height) self.applied_old_hires_behavior_to = (self.width, self.height) if self.hr_resize_x == 0 and self.hr_resize_y == 0: self.extra_generation_params["Hires upscale"] = self.hr_scale self.hr_upscale_to_x = int(self.width * self.hr_scale) self.hr_upscale_to_y = int(self.height * self.hr_scale) else: self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}" if self.hr_resize_y == 0: self.hr_upscale_to_x = self.hr_resize_x self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width elif self.hr_resize_x == 0: self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height self.hr_upscale_to_y = self.hr_resize_y else: target_w = self.hr_resize_x target_h = self.hr_resize_y src_ratio = self.width / self.height dst_ratio = self.hr_resize_x / self.hr_resize_y if src_ratio < dst_ratio: self.hr_upscale_to_x = self.hr_resize_x self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width else: self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height self.hr_upscale_to_y = self.hr_resize_y self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f if not state.processing_has_refined_job_count: if state.job_count == -1: state.job_count = self.n_iter shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count) state.job_count = state.job_count * 2 state.processing_has_refined_job_count = True if self.hr_second_pass_steps: self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps if self.hr_upscaler is not None: self.extra_generation_params["Hires upscaler"] = self.hr_upscaler def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x if not self.enable_hr: return samples if self.latent_scale_mode is None: decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None current = shared.sd_model.sd_checkpoint_info try: if self.hr_checkpoint_info is not None: self.sampler = None sd_models.reload_model_weights(info=self.hr_checkpoint_info) devices.torch_gc() return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) finally: self.sampler = None sd_models.reload_model_weights(info=current) devices.torch_gc() def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): self.is_hr_pass = True target_width = self.hr_upscale_to_x target_height = self.hr_upscale_to_y def save_intermediate(image, index): """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix: return if not isinstance(image, Image.Image): image = sd_samplers.sample_to_image(image, index, approximation=0) info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix") img2img_sampler_name = self.hr_sampler_name or self.sampler_name if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM img2img_sampler_name = 'DDIM' self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) if self.latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"]) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0: image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples) else: image_conditioning = self.txt2img_image_conditioning(samples) else: lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) batch_images = [] for i, x_sample in enumerate(lowres_samples): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) image = Image.fromarray(x_sample) save_intermediate(image, i) image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) batch_images.append(image) decoded_samples = torch.from_numpy(np.array(batch_images)) decoded_samples = decoded_samples.to(shared.device) self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method)) image_conditioning = self.img2img_image_conditioning(decoded_samples, samples) shared.state.nextjob() samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) # GC now before running the next img2img to prevent running out of memory devices.torch_gc() if not self.disable_extra_networks: with devices.autocast(): extra_networks.activate(self, self.hr_extra_network_data) with devices.autocast(): self.calculate_hr_conds() sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True)) if self.scripts is not None: self.scripts.before_hr(self) samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False return decoded_samples def close(self): super().close() self.hr_c = None self.hr_uc = None if not opts.experimental_persistent_cond_cache: StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None] StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None] def setup_prompts(self): super().setup_prompts() if not self.enable_hr: return if self.hr_prompt == '': self.hr_prompt = self.prompt if self.hr_negative_prompt == '': self.hr_negative_prompt = self.negative_prompt if type(self.hr_prompt) == list: self.all_hr_prompts = self.hr_prompt else: self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt] if type(self.hr_negative_prompt) == list: self.all_hr_negative_prompts = self.hr_negative_prompt else: self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt] self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts] self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts] def calculate_hr_conds(self): if self.hr_c is not None: return hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y) hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True) self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data) self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) def setup_conds(self): super().setup_conds() self.hr_uc = None self.hr_c = None if self.enable_hr and self.hr_checkpoint_info is None: if shared.opts.hires_fix_use_firstpass_conds: self.calculate_hr_conds() elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded with devices.autocast(): extra_networks.activate(self, self.hr_extra_network_data) self.calculate_hr_conds() with devices.autocast(): extra_networks.activate(self, self.extra_network_data) def parse_extra_network_prompts(self): res = super().parse_extra_network_prompts() if self.enable_hr: self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size] self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size] self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts) return res class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): super().__init__(**kwargs) self.init_images = init_images self.resize_mode: int = resize_mode self.denoising_strength: float = denoising_strength self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None self.init_latent = None self.image_mask = mask self.latent_mask = None self.mask_for_overlay = None if mask_blur is not None: mask_blur_x = mask_blur mask_blur_y = mask_blur self.mask_blur_x = mask_blur_x self.mask_blur_y = mask_blur_y self.inpainting_fill = inpainting_fill self.inpaint_full_res = inpaint_full_res self.inpaint_full_res_padding = inpaint_full_res_padding self.inpainting_mask_invert = inpainting_mask_invert self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier self.mask = None self.nmask = None self.image_conditioning = None def init(self, all_prompts, all_seeds, all_subseeds): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) crop_region = None image_mask = self.image_mask if image_mask is not None: image_mask = image_mask.convert('L') if self.inpainting_mask_invert: image_mask = ImageOps.invert(image_mask) if self.mask_blur_x > 0: np_mask = np.array(image_mask) kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x) image_mask = Image.fromarray(np_mask) if self.mask_blur_y > 0: np_mask = np.array(image_mask) kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y) image_mask = Image.fromarray(np_mask) if self.inpaint_full_res: self.mask_for_overlay = image_mask mask = image_mask.convert('L') crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding) crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) x1, y1, x2, y2 = crop_region mask = mask.crop(crop_region) image_mask = images.resize_image(2, mask, self.width, self.height) self.paste_to = (x1, y1, x2-x1, y2-y1) else: image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height) np_mask = np.array(image_mask) np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) self.mask_for_overlay = Image.fromarray(np_mask) self.overlay_images = [] latent_mask = self.latent_mask if self.latent_mask is not None else image_mask add_color_corrections = opts.img2img_color_correction and self.color_corrections is None if add_color_corrections: self.color_corrections = [] imgs = [] for img in self.init_images: # Save init image if opts.save_init_img: self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest() images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False) image = images.flatten(img, opts.img2img_background_color) if crop_region is None and self.resize_mode != 3: image = images.resize_image(self.resize_mode, image, self.width, self.height) if image_mask is not None: image_masked = Image.new('RGBa', (image.width, image.height)) image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) self.overlay_images.append(image_masked.convert('RGBA')) # crop_region is not None if we are doing inpaint full res if crop_region is not None: image = image.crop(crop_region) image = images.resize_image(2, image, self.width, self.height) if image_mask is not None: if self.inpainting_fill != 1: image = masking.fill(image, latent_mask) if add_color_corrections: self.color_corrections.append(setup_color_correction(image)) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) imgs.append(image) if len(imgs) == 1: batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) if self.overlay_images is not None: self.overlay_images = self.overlay_images * self.batch_size if self.color_corrections is not None and len(self.color_corrections) == 1: self.color_corrections = self.color_corrections * self.batch_size elif len(imgs) <= self.batch_size: self.batch_size = len(imgs) batch_images = np.array(imgs) else: raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less") image = torch.from_numpy(batch_images) self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model) devices.torch_gc() if self.resize_mode == 3: self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") if image_mask is not None: init_mask = latent_mask latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = latmask[0] latmask = np.around(latmask) latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype) # this needs to be fixed to be done in sample() using actual seeds for batches if self.inpainting_fill == 2: self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask elif self.inpainting_fill == 3: self.init_latent = self.init_latent * self.mask self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) if self.initial_noise_multiplier != 1.0: self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier x *= self.initial_noise_multiplier samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) if self.mask is not None: samples = samples * self.nmask + self.init_latent * self.mask del x devices.torch_gc() return samples def get_token_merging_ratio(self, for_hr=False): return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio