import torch import network class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]): return NetworkModuleOFT(net, weights) return None # adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.oft_blocks = weights.w["oft_blocks"] self.alpha = weights.w["alpha"] self.dim = self.oft_blocks.shape[0] self.num_blocks = self.dim #if type(self.alpha) == torch.Tensor: # self.alpha = self.alpha.detach().numpy() if "Linear" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_features elif "Conv" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_channels self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.num_blocks self.oft_multiplier = self.multiplier() # replace forward method of original linear rather than replacing the module # self.org_forward = self.sd_module.forward # self.sd_module.forward = self.forward def get_weight(self): block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I R = torch.block_diag(*block_R_weighted) return R def calc_updown(self, orig_weight): oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) block_Q = oft_blocks - oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I R = torch.block_diag(*block_R_weighted) #R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype) # W = R*W_0 updown = orig_weight + R output_shape = [R.size(0), orig_weight.size(1)] return self.finalize_updown(updown, orig_weight, output_shape) # def forward(self, x, y=None): # x = self.org_forward(x) # if self.oft_multiplier == 0.0: # return x # R = self.get_weight().to(x.device, dtype=x.dtype) # if x.dim() == 4: # x = x.permute(0, 2, 3, 1) # x = torch.matmul(x, R) # x = x.permute(0, 3, 1, 2) # else: # x = torch.matmul(x, R) # return x