### This file contains impls for underlying related models (CLIP, T5, etc) import torch import math from torch import nn from transformers import CLIPTokenizer, T5TokenizerFast from modules import sd_hijack ################################################################################################# ### Core/Utility ################################################################################################# class AutocastLinear(nn.Linear): """Same as usual linear layer, but casts its weights to whatever the parameter type is. This is different from torch.autocast in a way that float16 layer processing float32 input will return float16 with autocast on, and float32 with this. T5 seems to be fucked if you do it in full float16 (returning almost all zeros in the final output). """ def forward(self, x): return torch.nn.functional.linear(x, self.weight.to(x.dtype), self.bias.to(x.dtype) if self.bias is not None else None) def attention(q, k, v, heads, mask=None): """Convenience wrapper around a basic attention operation""" b, _, dim_head = q.shape dim_head //= heads q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)] out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) return out.transpose(1, 2).reshape(b, -1, heads * dim_head) class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device) self.act = act_layer self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x ################################################################################################# ### CLIP ################################################################################################# class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device): super().__init__() self.heads = heads self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) def forward(self, x, mask=None): q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x) out = attention(q, k, v, self.heads, mask) return self.out_proj(out) ACTIVATIONS = { "quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), "gelu": torch.nn.functional.gelu, } class CLIPLayer(torch.nn.Module): def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device): super().__init__() self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device) self.self_attn = CLIPAttention(embed_dim, heads, dtype, device) self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device) #self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device) self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device) def forward(self, x, mask=None): x += self.self_attn(self.layer_norm1(x), mask) x += self.mlp(self.layer_norm2(x)) return x class CLIPEncoder(torch.nn.Module): def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device): super().__init__() self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)]) def forward(self, x, mask=None, intermediate_output=None): if intermediate_output is not None: if intermediate_output < 0: intermediate_output = len(self.layers) + intermediate_output intermediate = None for i, layer in enumerate(self.layers): x = layer(x, mask) if i == intermediate_output: intermediate = x.clone() return x, intermediate class CLIPEmbeddings(torch.nn.Module): def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"): super().__init__() self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key) self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) def forward(self, input_tokens): return self.token_embedding(input_tokens) + self.position_embedding.weight class CLIPTextModel_(torch.nn.Module): def __init__(self, config_dict, dtype, device): num_layers = config_dict["num_hidden_layers"] embed_dim = config_dict["hidden_size"] heads = config_dict["num_attention_heads"] intermediate_size = config_dict["intermediate_size"] intermediate_activation = config_dict["hidden_act"] super().__init__() self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l')) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device) def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True): x = self.embeddings(input_tokens) causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output) x = self.final_layer_norm(x) if i is not None and final_layer_norm_intermediate: i = self.final_layer_norm(i) pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] return x, i, pooled_output class CLIPTextModel(torch.nn.Module): def __init__(self, config_dict, dtype, device): super().__init__() self.num_layers = config_dict["num_hidden_layers"] self.text_model = CLIPTextModel_(config_dict, dtype, device) embed_dim = config_dict["hidden_size"] self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) self.text_projection.weight.copy_(torch.eye(embed_dim)) self.dtype = dtype def get_input_embeddings(self): return self.text_model.embeddings.token_embedding def set_input_embeddings(self, embeddings): self.text_model.embeddings.token_embedding = embeddings def forward(self, *args, **kwargs): x = self.text_model(*args, **kwargs) out = self.text_projection(x[2]) return (x[0], x[1], out, x[2]) class SDTokenizer: def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None): self.tokenizer = tokenizer self.max_length = max_length self.min_length = min_length empty = self.tokenizer('')["input_ids"] if has_start_token: self.tokens_start = 1 self.start_token = empty[0] self.end_token = empty[1] else: self.tokens_start = 0 self.start_token = None self.end_token = empty[0] self.pad_with_end = pad_with_end self.pad_to_max_length = pad_to_max_length vocab = self.tokenizer.get_vocab() self.inv_vocab = {v: k for k, v in vocab.items()} self.max_word_length = 8 def tokenize_with_weights(self, text:str): """Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.""" if self.pad_with_end: pad_token = self.end_token else: pad_token = 0 batch = [] if self.start_token is not None: batch.append((self.start_token, 1.0)) to_tokenize = text.replace("\n", " ").split(' ') to_tokenize = [x for x in to_tokenize if x != ""] for word in to_tokenize: batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) batch.append((self.end_token, 1.0)) if self.pad_to_max_length: batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch))) if self.min_length is not None and len(batch) < self.min_length: batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch))) return [batch] class SDXLClipGTokenizer(SDTokenizer): def __init__(self, tokenizer): super().__init__(pad_with_end=False, tokenizer=tokenizer) class SD3Tokenizer: def __init__(self): clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") self.clip_l = SDTokenizer(tokenizer=clip_tokenizer) self.clip_g = SDXLClipGTokenizer(clip_tokenizer) self.t5xxl = T5XXLTokenizer() def tokenize_with_weights(self, text:str): out = {} out["g"] = self.clip_g.tokenize_with_weights(text) out["l"] = self.clip_l.tokenize_with_weights(text) out["t5xxl"] = self.t5xxl.tokenize_with_weights(text) return out class ClipTokenWeightEncoder: def encode_token_weights(self, token_weight_pairs): tokens = [a[0] for a in token_weight_pairs[0]] out, pooled = self([tokens]) if pooled is not None: first_pooled = pooled[0:1].cpu() else: first_pooled = pooled output = [out[0:1]] return torch.cat(output, dim=-2).cpu(), first_pooled class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = ["last", "pooled", "hidden"] def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel, special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True): super().__init__() assert layer in self.LAYERS self.transformer = model_class(textmodel_json_config, dtype, device) self.num_layers = self.transformer.num_layers self.max_length = max_length self.transformer = self.transformer.eval() for param in self.parameters(): param.requires_grad = False self.layer = layer self.layer_idx = None self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407} self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) self.layer_norm_hidden_state = layer_norm_hidden_state self.return_projected_pooled = return_projected_pooled if layer == "hidden": assert layer_idx is not None assert abs(layer_idx) < self.num_layers self.set_clip_options({"layer": layer_idx}) self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled) def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) if layer_idx is None or abs(layer_idx) > self.num_layers: self.layer = "last" else: self.layer = "hidden" self.layer_idx = layer_idx def forward(self, tokens): backup_embeds = self.transformer.get_input_embeddings() tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device) outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) self.transformer.set_input_embeddings(backup_embeds) if self.layer == "last": z = outputs[0] else: z = outputs[1] pooled_output = None if len(outputs) >= 3: if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None: pooled_output = outputs[3].float() elif outputs[2] is not None: pooled_output = outputs[2].float() return z.float(), pooled_output class SDXLClipG(SDClipModel): """Wraps the CLIP-G model into the SD-CLIP-Model interface""" def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None): if layer == "penultimate": layer="hidden" layer_idx=-2 super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) class T5XXLModel(SDClipModel): """Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience""" def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None): super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5) ################################################################################################# ### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl ################################################################################################# class T5XXLTokenizer(SDTokenizer): """Wraps the T5 Tokenizer from HF into the SDTokenizer interface""" def __init__(self): super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) class T5LayerNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None): super().__init__() self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device)) self.variance_epsilon = eps def forward(self, x): variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_epsilon) return self.weight.to(device=x.device, dtype=x.dtype) * x class T5DenseGatedActDense(torch.nn.Module): def __init__(self, model_dim, ff_dim, dtype, device): super().__init__() self.wi_0 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) self.wi_1 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) self.wo = AutocastLinear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) def forward(self, x): hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh") hidden_linear = self.wi_1(x) x = hidden_gelu * hidden_linear x = self.wo(x) return x class T5LayerFF(torch.nn.Module): def __init__(self, model_dim, ff_dim, dtype, device): super().__init__() self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device) self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, x): forwarded_states = self.layer_norm(x) forwarded_states = self.DenseReluDense(forwarded_states) x += forwarded_states return x class T5Attention(torch.nn.Module): def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() # Mesh TensorFlow initialization to avoid scaling before softmax self.q = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.k = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.v = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) self.o = AutocastLinear(inner_dim, model_dim, bias=False, dtype=dtype, device=device) self.num_heads = num_heads self.relative_attention_bias = None if relative_attention_bias: self.relative_attention_num_buckets = 32 self.relative_attention_max_distance = 128 self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device): """Compute binned relative position bias""" context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward(self, x, past_bias=None): q = self.q(x) k = self.k(x) v = self.v(x) if self.relative_attention_bias is not None: past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device) if past_bias is not None: mask = past_bias else: mask = None out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask.to(x.dtype) if mask is not None else None) return self.o(out), past_bias class T5LayerSelfAttention(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device) self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, x, past_bias=None): output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias) x += output return x, past_bias class T5Block(torch.nn.Module): def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device): super().__init__() self.layer = torch.nn.ModuleList() self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device)) self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device)) def forward(self, x, past_bias=None): x, past_bias = self.layer[0](x, past_bias) x = self.layer[-1](x) return x, past_bias class T5Stack(torch.nn.Module): def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device): super().__init__() self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device) self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)]) self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device) def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True): intermediate = None x = self.embed_tokens(input_ids).to(torch.float32) # needs float32 or else T5 returns all zeroes past_bias = None for i, layer in enumerate(self.block): x, past_bias = layer(x, past_bias) if i == intermediate_output: intermediate = x.clone() x = self.final_layer_norm(x) if intermediate is not None and final_layer_norm_intermediate: intermediate = self.final_layer_norm(intermediate) return x, intermediate class T5(torch.nn.Module): def __init__(self, config_dict, dtype, device): super().__init__() self.num_layers = config_dict["num_layers"] self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device) self.dtype = dtype def get_input_embeddings(self): return self.encoder.embed_tokens def set_input_embeddings(self, embeddings): self.encoder.embed_tokens = embeddings def forward(self, *args, **kwargs): return self.encoder(*args, **kwargs)