stable-diffusion-webui/modules/deepbooru.py

173 lines
6.2 KiB
Python

import os.path
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
import time
import re
re_special = re.compile(r'([\\()])')
def get_deepbooru_tags(pil_image):
"""
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
"""
from modules import shared # prevents circular reference
try:
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
return get_tags_from_process(pil_image)
finally:
release_process()
OPT_INCLUDE_RANKS = "include_ranks"
def create_deepbooru_opts():
from modules import shared
return {
"use_spaces": shared.opts.deepbooru_use_spaces,
"use_escape": shared.opts.deepbooru_escape,
"alpha_sort": shared.opts.deepbooru_sort_alpha,
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
}
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
model, tags = get_deepbooru_tags_model()
while True: # while process is running, keep monitoring queue for new image
pil_image = queue.get()
if pil_image == "QUIT":
break
else:
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
def create_deepbooru_process(threshold, deepbooru_opts):
"""
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
the tags.
"""
from modules import shared # prevents circular reference
shared.deepbooru_process_manager = multiprocessing.Manager()
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
shared.deepbooru_process.start()
def get_tags_from_process(image):
from modules import shared
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process_queue.put(image)
while shared.deepbooru_process_return["value"] == -1:
time.sleep(0.2)
caption = shared.deepbooru_process_return["value"]
shared.deepbooru_process_return["value"] = -1
return caption
def release_process():
"""
Stops the deepbooru process to return used memory
"""
from modules import shared # prevents circular reference
shared.deepbooru_process_queue.put("QUIT")
shared.deepbooru_process.join()
shared.deepbooru_process_queue = None
shared.deepbooru_process = None
shared.deepbooru_process_return = None
shared.deepbooru_process_manager = None
def get_deepbooru_tags_model():
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
this_folder = os.path.dirname(__file__)
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
if not os.path.exists(os.path.join(model_path, 'project.json')):
# there is no point importing these every time
import zipfile
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
model_path)
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
zip_ref.extractall(model_path)
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
tags = dd.project.load_tags_from_project(model_path)
model = dd.project.load_model_from_project(
model_path, compile_model=False
)
return model, tags
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
alpha_sort = deepbooru_opts['alpha_sort']
use_spaces = deepbooru_opts['use_spaces']
use_escape = deepbooru_opts['use_escape']
include_ranks = deepbooru_opts['include_ranks']
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
image = tf.image.resize(
image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True,
)
image = image.numpy() # EagerTensor to np.array
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
image_shape = image.shape
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
y = model.predict(image)[0]
result_dict = {}
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
unsorted_tags_in_theshold = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
unsorted_tags_in_theshold.append((result_dict[tag], tag))
result_tags_print.append(f'{result_dict[tag]} {tag}')
# sort tags
result_tags_out = []
sort_ndx = 0
if alpha_sort:
sort_ndx = 1
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{weight:.3f})"
result_tags_out.append(tag_outformat)
print('\n'.join(sorted(result_tags_print, reverse=True)))
return ', '.join(result_tags_out)