34 lines
1.2 KiB
Python
34 lines
1.2 KiB
Python
|
|
import network
|
|
|
|
class ModuleTypeGLora(network.ModuleType):
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
|
if all(x in weights.w for x in ["a1.weight", "a2.weight", "alpha", "b1.weight", "b2.weight"]):
|
|
return NetworkModuleGLora(net, weights)
|
|
|
|
return None
|
|
|
|
# adapted from https://github.com/KohakuBlueleaf/LyCORIS
|
|
class NetworkModuleGLora(network.NetworkModule):
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
|
super().__init__(net, weights)
|
|
|
|
if hasattr(self.sd_module, 'weight'):
|
|
self.shape = self.sd_module.weight.shape
|
|
|
|
self.w1a = weights.w["a1.weight"]
|
|
self.w1b = weights.w["b1.weight"]
|
|
self.w2a = weights.w["a2.weight"]
|
|
self.w2b = weights.w["b2.weight"]
|
|
|
|
def calc_updown(self, orig_weight):
|
|
w1a = self.w1a.to(orig_weight.device)
|
|
w1b = self.w1b.to(orig_weight.device)
|
|
w2a = self.w2a.to(orig_weight.device)
|
|
w2b = self.w2b.to(orig_weight.device)
|
|
|
|
output_shape = [w1a.size(0), w1b.size(1)]
|
|
updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a))
|
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|