stable-diffusion-webui/scripts/xyz_grid.py

589 lines
25 KiB
Python

from collections import namedtuple
from copy import copy
from itertools import permutations, chain
import random
import csv
from io import StringIO
from PIL import Image
import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images, paths, sd_samplers, processing, sd_models, sd_vae
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import modules.sd_vae
import glob
import os
import re
from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
def apply_order(p, x, xs):
token_order = []
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
prompt_parts = []
# Split the prompt up, taking out the tokens
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
# Rebuild the prompt with the tokens in the order we want
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
def apply_sampler(p, x, xs):
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
p.sampler_name = sampler_name
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
def confirm_checkpoints(p, xs):
for x in xs:
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
def apply_upscale_latent_space(p, x, xs):
if x.lower().strip() != '0':
opts.data["use_scale_latent_for_hires_fix"] = True
else:
opts.data["use_scale_latent_for_hires_fix"] = False
def find_vae(name: str):
if name.lower() in ['auto', 'automatic']:
return modules.sd_vae.unspecified
if name.lower() == 'none':
return None
else:
choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
if len(choices) == 0:
print(f"No VAE found for {name}; using automatic")
return modules.sd_vae.unspecified
else:
return modules.sd_vae.vae_dict[choices[0]]
def apply_vae(p, x, xs):
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
return x
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
def format_nothing(p, opt, x):
return ""
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
class AxisOption:
def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None):
self.label = label
self.type = type
self.apply = apply
self.format_value = format_value
self.confirm = confirm
self.cost = cost
self.choices = choices
class AxisOptionImg2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = True
class AxisOptionTxt2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = False
axis_options = [
AxisOption("Nothing", str, do_nothing, format_value=format_nothing),
AxisOption("Seed", int, apply_field("seed")),
AxisOption("Var. seed", int, apply_field("subseed")),
AxisOption("Var. strength", float, apply_field("subseed_strength")),
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
AxisOption("Sigma noise", float, apply_field("s_noise")),
AxisOption("Eta", float, apply_field("eta")),
AxisOption("Clip skip", int, apply_clip_skip),
AxisOption("Denoising", float, apply_field("denoising_strength")),
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
# Temporary list of all the images that are generated to be populated into the grid.
# Will be filled with empty images for any individual step that fails to process properly
image_cache = [None] * (len(xs) * len(ys) * len(zs))
processed_result = None
cell_mode = "P"
cell_size = (1, 1)
state.job_count = len(xs) * len(ys) * len(zs) * p.n_iter
def process_cell(x, y, z, ix, iy, iz):
nonlocal image_cache, processed_result, cell_mode, cell_size
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
state.job = f"{index(ix, iy, iz) + 1} out of {len(xs) * len(ys) * len(zs)}"
processed: Processed = cell(x, y, z)
try:
# this dereference will throw an exception if the image was not processed
# (this happens in cases such as if the user stops the process from the UI)
processed_image = processed.images[0]
if processed_result is None:
# Use our first valid processed result as a template container to hold our full results
processed_result = copy(processed)
cell_mode = processed_image.mode
cell_size = processed_image.size
processed_result.images = [Image.new(cell_mode, cell_size)]
image_cache[index(ix, iy, iz)] = processed_image
if include_lone_images:
processed_result.images.append(processed_image)
processed_result.all_prompts.append(processed.prompt)
processed_result.all_seeds.append(processed.seed)
processed_result.infotexts.append(processed.infotexts[0])
except:
image_cache[index(ix, iy, iz)] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
grids = [None] * len(zs)
for i in range(len(zs)):
start_index = i * len(xs) * len(ys)
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(image_cache[start_index:end_index], rows=len(ys))
if draw_legend:
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
grids[i] = grid
if include_sub_grids and len(zs) > 1:
processed_result.images.insert(i+1, grid)
original_grid_size = grids[0].size
grids = images.image_grid(grids, rows=1)
processed_result.images[0] = images.draw_grid_annotations(grids, original_grid_size[0], original_grid_size[1], title_texts, [[images.GridAnnotation()]])
return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
class Script(scripts.Script):
def title(self):
return "X/Y/Z plot"
def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
with gr.Row():
with gr.Column(scale=19):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
xy_swap_args = [x_type, x_values, y_type, y_values]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, z_type, z_values]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, z_type, z_values]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
return ", ".join(axis.choices()) if axis.choices else gr.update()
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
def select_axis(x_type):
return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds]
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
def process_axis(opt, vals):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
if opt.type == int:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
mc = re_range_count.fullmatch(val)
if m is not None:
start = int(m.group(1))
end = int(m.group(2))+1
step = int(m.group(3)) if m.group(3) is not None else 1
valslist_ext += list(range(start, end, step))
elif mc is not None:
start = int(mc.group(1))
end = int(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == float:
valslist_ext = []
for val in valslist:
m = re_range_float.fullmatch(val)
mc = re_range_count_float.fullmatch(val)
if m is not None:
start = float(m.group(1))
end = float(m.group(2))
step = float(m.group(3)) if m.group(3) is not None else 1
valslist_ext += np.arange(start, end + step, step).tolist()
elif mc is not None:
start = float(mc.group(1))
end = float(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == str_permutations:
valslist = list(permutations(valslist))
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.confirm:
opt.confirm(p, valslist)
return valslist
x_opt = self.current_axis_options[x_type]
xs = process_axis(x_opt, x_values)
y_opt = self.current_axis_options[y_type]
ys = process_axis(y_opt, y_values)
z_opt = self.current_axis_options[z_type]
zs = process_axis(z_opt, z_values)
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs) * len(zs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else:
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs)
elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
else:
total_steps *= 2
total_steps *= p.n_iter
image_cell_count = p.n_iter * p.batch_size
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
plural_s = 's' if len(zs) > 1 else ''
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps)
grid_infotext = [None]
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
first_axes_processed = 'x'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
def cell(x, y, z):
if shared.state.interrupted:
return Processed(p, [], p.seed, "")
pc = copy(p)
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
res = process_images(pc)
if grid_infotext[0] is None:
pc.extra_generation_params = copy(pc.extra_generation_params)
if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label
pc.extra_generation_params["X Values"] = x_values
if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
if y_opt.label != 'Nothing':
pc.extra_generation_params["Y Type"] = y_opt.label
pc.extra_generation_params["Y Values"] = y_values
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res
with SharedSettingsStackHelper():
processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
draw_legend=draw_legend,
include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed
)
if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed