225 lines
7.6 KiB
Python
225 lines
7.6 KiB
Python
from __future__ import annotations
|
|
import os
|
|
from collections import namedtuple
|
|
import enum
|
|
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from modules import sd_models, cache, errors, hashes, shared
|
|
|
|
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
|
|
|
|
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
|
|
|
|
|
class SdVersion(enum.Enum):
|
|
Unknown = 1
|
|
SD1 = 2
|
|
SD2 = 3
|
|
SDXL = 4
|
|
|
|
|
|
class NetworkOnDisk:
|
|
def __init__(self, name, filename):
|
|
self.name = name
|
|
self.filename = filename
|
|
self.metadata = {}
|
|
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
|
|
|
def read_metadata():
|
|
metadata = sd_models.read_metadata_from_safetensors(filename)
|
|
|
|
return metadata
|
|
|
|
if self.is_safetensors:
|
|
try:
|
|
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
|
|
except Exception as e:
|
|
errors.display(e, f"reading lora {filename}")
|
|
|
|
if self.metadata:
|
|
m = {}
|
|
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
|
m[k] = v
|
|
|
|
self.metadata = m
|
|
|
|
self.alias = self.metadata.get('ss_output_name', self.name)
|
|
|
|
self.hash = None
|
|
self.shorthash = None
|
|
self.set_hash(
|
|
self.metadata.get('sshs_model_hash') or
|
|
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
|
|
''
|
|
)
|
|
|
|
self.sd_version = self.detect_version()
|
|
|
|
def detect_version(self):
|
|
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
|
|
return SdVersion.SDXL
|
|
elif str(self.metadata.get('ss_v2', "")) == "True":
|
|
return SdVersion.SD2
|
|
elif len(self.metadata):
|
|
return SdVersion.SD1
|
|
|
|
return SdVersion.Unknown
|
|
|
|
def set_hash(self, v):
|
|
self.hash = v
|
|
self.shorthash = self.hash[0:12]
|
|
|
|
if self.shorthash:
|
|
import networks
|
|
networks.available_network_hash_lookup[self.shorthash] = self
|
|
|
|
def read_hash(self):
|
|
if not self.hash:
|
|
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
|
|
|
|
def get_alias(self):
|
|
import networks
|
|
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
|
|
return self.name
|
|
else:
|
|
return self.alias
|
|
|
|
|
|
class Network: # LoraModule
|
|
def __init__(self, name, network_on_disk: NetworkOnDisk):
|
|
self.name = name
|
|
self.network_on_disk = network_on_disk
|
|
self.te_multiplier = 1.0
|
|
self.unet_multiplier = 1.0
|
|
self.dyn_dim = None
|
|
self.modules = {}
|
|
self.bundle_embeddings = {}
|
|
self.mtime = None
|
|
|
|
self.mentioned_name = None
|
|
"""the text that was used to add the network to prompt - can be either name or an alias"""
|
|
|
|
|
|
class ModuleType:
|
|
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
|
|
return None
|
|
|
|
|
|
class NetworkModule:
|
|
def __init__(self, net: Network, weights: NetworkWeights):
|
|
self.network = net
|
|
self.network_key = weights.network_key
|
|
self.sd_key = weights.sd_key
|
|
self.sd_module = weights.sd_module
|
|
|
|
if hasattr(self.sd_module, 'weight'):
|
|
self.shape = self.sd_module.weight.shape
|
|
elif isinstance(self.sd_module, nn.MultiheadAttention):
|
|
# For now, only self-attn use Pytorch's MHA
|
|
# So assume all qkvo proj have same shape
|
|
self.shape = self.sd_module.out_proj.weight.shape
|
|
else:
|
|
self.shape = None
|
|
|
|
self.ops = None
|
|
self.extra_kwargs = {}
|
|
if isinstance(self.sd_module, nn.Conv2d):
|
|
self.ops = F.conv2d
|
|
self.extra_kwargs = {
|
|
'stride': self.sd_module.stride,
|
|
'padding': self.sd_module.padding
|
|
}
|
|
elif isinstance(self.sd_module, nn.Linear):
|
|
self.ops = F.linear
|
|
elif isinstance(self.sd_module, nn.LayerNorm):
|
|
self.ops = F.layer_norm
|
|
self.extra_kwargs = {
|
|
'normalized_shape': self.sd_module.normalized_shape,
|
|
'eps': self.sd_module.eps
|
|
}
|
|
elif isinstance(self.sd_module, nn.GroupNorm):
|
|
self.ops = F.group_norm
|
|
self.extra_kwargs = {
|
|
'num_groups': self.sd_module.num_groups,
|
|
'eps': self.sd_module.eps
|
|
}
|
|
|
|
self.dim = None
|
|
self.bias = weights.w.get("bias")
|
|
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
|
|
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
|
|
|
|
self.dora_scale = weights.w.get("dora_scale", None)
|
|
self.dora_norm_dims = len(self.shape) - 1
|
|
|
|
def multiplier(self):
|
|
if 'transformer' in self.sd_key[:20]:
|
|
return self.network.te_multiplier
|
|
else:
|
|
return self.network.unet_multiplier
|
|
|
|
def calc_scale(self):
|
|
if self.scale is not None:
|
|
return self.scale
|
|
if self.dim is not None and self.alpha is not None:
|
|
return self.alpha / self.dim
|
|
|
|
return 1.0
|
|
|
|
def apply_weight_decompose(self, updown, orig_weight):
|
|
# Match the device/dtype
|
|
orig_weight = orig_weight.to(updown.dtype)
|
|
dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype)
|
|
updown = updown.to(orig_weight.device)
|
|
|
|
merged_scale1 = updown + orig_weight
|
|
merged_scale1_norm = (
|
|
merged_scale1.transpose(0, 1)
|
|
.reshape(merged_scale1.shape[1], -1)
|
|
.norm(dim=1, keepdim=True)
|
|
.reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims)
|
|
.transpose(0, 1)
|
|
)
|
|
|
|
dora_merged = (
|
|
merged_scale1 * (dora_scale / merged_scale1_norm)
|
|
)
|
|
final_updown = dora_merged - orig_weight
|
|
return final_updown
|
|
|
|
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
|
if self.bias is not None:
|
|
updown = updown.reshape(self.bias.shape)
|
|
updown += self.bias.to(orig_weight.device, dtype=updown.dtype)
|
|
updown = updown.reshape(output_shape)
|
|
|
|
if len(output_shape) == 4:
|
|
updown = updown.reshape(output_shape)
|
|
|
|
if orig_weight.size().numel() == updown.size().numel():
|
|
updown = updown.reshape(orig_weight.shape)
|
|
|
|
if ex_bias is not None:
|
|
ex_bias = ex_bias * self.multiplier()
|
|
|
|
updown = updown * self.calc_scale()
|
|
|
|
if self.dora_scale is not None:
|
|
updown = self.apply_weight_decompose(updown, orig_weight)
|
|
|
|
return updown * self.multiplier(), ex_bias
|
|
|
|
def calc_updown(self, target):
|
|
raise NotImplementedError()
|
|
|
|
def forward(self, x, y):
|
|
"""A general forward implementation for all modules"""
|
|
if self.ops is None:
|
|
raise NotImplementedError()
|
|
else:
|
|
updown, ex_bias = self.calc_updown(self.sd_module.weight)
|
|
return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)
|
|
|