stable-diffusion-webui/modules/memmon.py

78 lines
2.1 KiB
Python

import threading
import time
from collections import defaultdict
import torch
class MemUsageMonitor(threading.Thread):
run_flag = None
device = None
disabled = False
opts = None
data = None
def __init__(self, name, device, opts):
threading.Thread.__init__(self)
self.name = name
self.device = device
self.opts = opts
self.daemon = True
self.run_flag = threading.Event()
self.data = defaultdict(int)
def run(self):
if self.disabled:
return
while True:
self.run_flag.wait()
torch.cuda.reset_peak_memory_stats()
self.data.clear()
if self.opts.memmon_poll_rate <= 0:
self.run_flag.clear()
continue
self.data["min_free"] = torch.cuda.mem_get_info()[0]
while self.run_flag.is_set():
free, total = torch.cuda.mem_get_info() # calling with self.device errors, torch bug?
self.data["min_free"] = min(self.data["min_free"], free)
time.sleep(1 / self.opts.memmon_poll_rate)
def dump_debug(self):
print(self, 'recorded data:')
for k, v in self.read().items():
print(k, -(v // -(1024 ** 2)))
print(self, 'raw torch memory stats:')
tm = torch.cuda.memory_stats(self.device)
for k, v in tm.items():
if 'bytes' not in k:
continue
print('\t' if 'peak' in k else '', k, -(v // -(1024 ** 2)))
print(torch.cuda.memory_summary())
def monitor(self):
self.run_flag.set()
def read(self):
free, total = torch.cuda.mem_get_info()
self.data["total"] = total
torch_stats = torch.cuda.memory_stats(self.device)
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
self.data["system_peak"] = total - self.data["min_free"]
return self.data
def stop(self):
self.run_flag.clear()
return self.read()