stable-diffusion-webui/modules/realesrgan_model.py

140 lines
5.7 KiB
Python

import os
import sys
import traceback
import numpy as np
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts
from modules import modelloader
class UpscalerRealESRGAN(Upscaler):
def __init__(self, path):
self.name = "RealESRGAN"
self.user_path = path
super().__init__()
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
self.enable = True
self.scalers = []
scalers = self.load_models(path)
local_model_paths = self.find_models(ext_filter=[".pth"])
for scaler in scalers:
if scaler.local_data_path.startswith("http"):
filename = modelloader.friendly_name(scaler.local_data_path)
local_model_candidates = [local_model for local_model in local_model_paths if local_model.endswith(f"{filename}.pth")]
if local_model_candidates:
scaler.local_data_path = local_model_candidates[0]
if scaler.name in opts.realesrgan_enabled_models:
self.scalers.append(scaler)
except Exception:
print("Error importing Real-ESRGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
self.enable = False
self.scalers = []
def do_upscale(self, img, path):
if not self.enable:
return img
info = self.load_model(path)
if not os.path.exists(info.local_data_path):
print(f"Unable to load RealESRGAN model: {info.name}")
return img
upsampler = RealESRGANer(
scale=info.scale,
model_path=info.local_data_path,
model=info.model(),
half=not cmd_opts.no_half and not cmd_opts.upcast_sampling,
tile=opts.ESRGAN_tile,
tile_pad=opts.ESRGAN_tile_overlap,
)
upsampled = upsampler.enhance(np.array(img), outscale=info.scale)[0]
image = Image.fromarray(upsampled)
return image
def load_model(self, path):
try:
info = next(iter([scaler for scaler in self.scalers if scaler.data_path == path]), None)
if info is None:
print(f"Unable to find model info: {path}")
return None
if info.local_data_path.startswith("http"):
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
return info
except Exception as e:
print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return None
def load_models(self, _):
return get_realesrgan_models(self)
def get_realesrgan_models(scaler):
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
models = [
UpscalerData(
name="R-ESRGAN General 4xV3",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
),
UpscalerData(
name="R-ESRGAN General WDN 4xV3",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
),
UpscalerData(
name="R-ESRGAN AnimeVideo",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
),
UpscalerData(
name="R-ESRGAN 4x+",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
scale=4,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
),
UpscalerData(
name="R-ESRGAN 4x+ Anime6B",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
scale=4,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
),
UpscalerData(
name="R-ESRGAN 2x+",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
scale=2,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
),
]
return models
except Exception:
print("Error making Real-ESRGAN models list:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)