Speed up persisting large number of outliers (#16649)
Recalculating the roots tuple every iteration could be very expensive, so instead let's do a topological sort.
This commit is contained in:
parent
fef08cbee8
commit
1b238e8837
|
@ -0,0 +1 @@
|
|||
Speed up persisting large number of outliers.
|
|
@ -88,7 +88,7 @@ from synapse.types import (
|
|||
)
|
||||
from synapse.types.state import StateFilter
|
||||
from synapse.util.async_helpers import Linearizer, concurrently_execute
|
||||
from synapse.util.iterutils import batch_iter, partition
|
||||
from synapse.util.iterutils import batch_iter, partition, sorted_topologically_batched
|
||||
from synapse.util.retryutils import NotRetryingDestination
|
||||
from synapse.util.stringutils import shortstr
|
||||
|
||||
|
@ -1669,14 +1669,13 @@ class FederationEventHandler:
|
|||
|
||||
# XXX: it might be possible to kick this process off in parallel with fetching
|
||||
# the events.
|
||||
while event_map:
|
||||
# build a list of events whose auth events are not in the queue.
|
||||
roots = tuple(
|
||||
ev
|
||||
for ev in event_map.values()
|
||||
if not any(aid in event_map for aid in ev.auth_event_ids())
|
||||
)
|
||||
|
||||
# We need to persist an event's auth events before the event.
|
||||
auth_graph = {
|
||||
ev: [event_map[e_id] for e_id in ev.auth_event_ids() if e_id in event_map]
|
||||
for ev in event_map.values()
|
||||
}
|
||||
for roots in sorted_topologically_batched(event_map.values(), auth_graph):
|
||||
if not roots:
|
||||
# if *none* of the remaining events are ready, that means
|
||||
# we have a loop. This either means a bug in our logic, or that
|
||||
|
@ -1698,9 +1697,6 @@ class FederationEventHandler:
|
|||
|
||||
await self._auth_and_persist_outliers_inner(room_id, roots)
|
||||
|
||||
for ev in roots:
|
||||
del event_map[ev.event_id]
|
||||
|
||||
async def _auth_and_persist_outliers_inner(
|
||||
self, room_id: str, fetched_events: Collection[EventBase]
|
||||
) -> None:
|
||||
|
|
|
@ -135,3 +135,54 @@ def sorted_topologically(
|
|||
degree_map[edge] -= 1
|
||||
if degree_map[edge] == 0:
|
||||
heapq.heappush(zero_degree, edge)
|
||||
|
||||
|
||||
def sorted_topologically_batched(
|
||||
nodes: Iterable[T],
|
||||
graph: Mapping[T, Collection[T]],
|
||||
) -> Generator[Collection[T], None, None]:
|
||||
r"""Walk the graph topologically, returning batches of nodes where all nodes
|
||||
that references it have been previously returned.
|
||||
|
||||
For example, given the following graph:
|
||||
|
||||
A
|
||||
/ \
|
||||
B C
|
||||
\ /
|
||||
D
|
||||
|
||||
This function will return: `[[A], [B, C], [D]]`.
|
||||
|
||||
This function is useful for e.g. batch persisting events in an auth chain,
|
||||
where we can only persist an event if all its auth events have already been
|
||||
persisted.
|
||||
"""
|
||||
|
||||
degree_map = {node: 0 for node in nodes}
|
||||
reverse_graph: Dict[T, Set[T]] = {}
|
||||
|
||||
for node, edges in graph.items():
|
||||
if node not in degree_map:
|
||||
continue
|
||||
|
||||
for edge in set(edges):
|
||||
if edge in degree_map:
|
||||
degree_map[node] += 1
|
||||
|
||||
reverse_graph.setdefault(edge, set()).add(node)
|
||||
reverse_graph.setdefault(node, set())
|
||||
|
||||
zero_degree = [node for node, degree in degree_map.items() if degree == 0]
|
||||
|
||||
while zero_degree:
|
||||
new_zero_degree = []
|
||||
for node in zero_degree:
|
||||
for edge in reverse_graph.get(node, []):
|
||||
if edge in degree_map:
|
||||
degree_map[edge] -= 1
|
||||
if degree_map[edge] == 0:
|
||||
new_zero_degree.append(edge)
|
||||
|
||||
yield zero_degree
|
||||
zero_degree = new_zero_degree
|
||||
|
|
|
@ -13,7 +13,11 @@
|
|||
# limitations under the License.
|
||||
from typing import Dict, Iterable, List, Sequence
|
||||
|
||||
from synapse.util.iterutils import chunk_seq, sorted_topologically
|
||||
from synapse.util.iterutils import (
|
||||
chunk_seq,
|
||||
sorted_topologically,
|
||||
sorted_topologically_batched,
|
||||
)
|
||||
|
||||
from tests.unittest import TestCase
|
||||
|
||||
|
@ -107,3 +111,73 @@ class SortTopologically(TestCase):
|
|||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
|
||||
|
||||
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
|
||||
|
||||
|
||||
class SortTopologicallyBatched(TestCase):
|
||||
"Test cases for `sorted_topologically_batched`"
|
||||
|
||||
def test_empty(self) -> None:
|
||||
"Test that an empty graph works correctly"
|
||||
|
||||
graph: Dict[int, List[int]] = {}
|
||||
self.assertEqual(list(sorted_topologically_batched([], graph)), [])
|
||||
|
||||
def test_handle_empty_graph(self) -> None:
|
||||
"Test that a graph where a node doesn't have an entry is treated as empty"
|
||||
|
||||
graph: Dict[int, List[int]] = {}
|
||||
|
||||
# For disconnected nodes the output is simply sorted.
|
||||
self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
|
||||
|
||||
def test_disconnected(self) -> None:
|
||||
"Test that a graph with no edges work"
|
||||
|
||||
graph: Dict[int, List[int]] = {1: [], 2: []}
|
||||
|
||||
# For disconnected nodes the output is simply sorted.
|
||||
self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
|
||||
|
||||
def test_linear(self) -> None:
|
||||
"Test that a simple `4 -> 3 -> 2 -> 1` graph works"
|
||||
|
||||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
|
||||
|
||||
self.assertEqual(
|
||||
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||
[[1], [2], [3], [4]],
|
||||
)
|
||||
|
||||
def test_subset(self) -> None:
|
||||
"Test that only sorting a subset of the graph works"
|
||||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
|
||||
|
||||
self.assertEqual(list(sorted_topologically_batched([4, 3], graph)), [[3], [4]])
|
||||
|
||||
def test_fork(self) -> None:
|
||||
"Test that a forked graph works"
|
||||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}
|
||||
|
||||
# Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
|
||||
# always get the same one.
|
||||
self.assertEqual(
|
||||
list(sorted_topologically_batched([4, 3, 2, 1], graph)), [[1], [2, 3], [4]]
|
||||
)
|
||||
|
||||
def test_duplicates(self) -> None:
|
||||
"Test that a graph with duplicate edges work"
|
||||
graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}
|
||||
|
||||
self.assertEqual(
|
||||
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||
[[1], [2], [3], [4]],
|
||||
)
|
||||
|
||||
def test_multiple_paths(self) -> None:
|
||||
"Test that a graph with multiple paths between two nodes work"
|
||||
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
|
||||
|
||||
self.assertEqual(
|
||||
list(sorted_topologically_batched([4, 3, 2, 1], graph)),
|
||||
[[1], [2], [3], [4]],
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue