synapse-old/tests/logging/test_opentracing.py

185 lines
6.5 KiB
Python

# Copyright 2022 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from twisted.internet import defer
from twisted.test.proto_helpers import MemoryReactorClock
from synapse.logging.context import (
LoggingContext,
make_deferred_yieldable,
run_in_background,
)
from synapse.logging.opentracing import (
start_active_span,
start_active_span_follows_from,
)
from synapse.util import Clock
try:
from synapse.logging.scopecontextmanager import LogContextScopeManager
except ImportError:
LogContextScopeManager = None # type: ignore
try:
import jaeger_client
except ImportError:
jaeger_client = None # type: ignore
from tests.unittest import TestCase
class LogContextScopeManagerTestCase(TestCase):
if LogContextScopeManager is None:
skip = "Requires opentracing" # type: ignore[unreachable]
if jaeger_client is None:
skip = "Requires jaeger_client" # type: ignore[unreachable]
def setUp(self) -> None:
# since this is a unit test, we don't really want to mess around with the
# global variables that power opentracing. We create our own tracer instance
# and test with it.
scope_manager = LogContextScopeManager()
config = jaeger_client.config.Config(
config={}, service_name="test", scope_manager=scope_manager
)
self._reporter = jaeger_client.reporter.InMemoryReporter()
self._tracer = config.create_tracer(
sampler=jaeger_client.ConstSampler(True),
reporter=self._reporter,
)
def test_start_active_span(self) -> None:
# the scope manager assumes a logging context of some sort.
with LoggingContext("root context"):
self.assertIsNone(self._tracer.active_span)
# start_active_span should start and activate a span.
scope = start_active_span("span", tracer=self._tracer)
span = scope.span
self.assertEqual(self._tracer.active_span, span)
self.assertIsNotNone(span.start_time)
# entering the context doesn't actually do a whole lot.
with scope as ctx:
self.assertIs(ctx, scope)
self.assertEqual(self._tracer.active_span, span)
# ... but leaving it unsets the active span, and finishes the span.
self.assertIsNone(self._tracer.active_span)
self.assertIsNotNone(span.end_time)
# the span should have been reported
self.assertEqual(self._reporter.get_spans(), [span])
def test_nested_spans(self) -> None:
"""Starting two spans off inside each other should work"""
with LoggingContext("root context"):
with start_active_span("root span", tracer=self._tracer) as root_scope:
self.assertEqual(self._tracer.active_span, root_scope.span)
scope1 = start_active_span(
"child1",
tracer=self._tracer,
)
self.assertEqual(
self._tracer.active_span, scope1.span, "child1 was not activated"
)
self.assertEqual(
scope1.span.context.parent_id, root_scope.span.context.span_id
)
scope2 = start_active_span_follows_from(
"child2",
contexts=(scope1,),
tracer=self._tracer,
)
self.assertEqual(self._tracer.active_span, scope2.span)
self.assertEqual(
scope2.span.context.parent_id, scope1.span.context.span_id
)
with scope1, scope2:
pass
# the root scope should be restored
self.assertEqual(self._tracer.active_span, root_scope.span)
self.assertIsNotNone(scope2.span.end_time)
self.assertIsNotNone(scope1.span.end_time)
self.assertIsNone(self._tracer.active_span)
# the spans should be reported in order of their finishing.
self.assertEqual(
self._reporter.get_spans(), [scope2.span, scope1.span, root_scope.span]
)
def test_overlapping_spans(self) -> None:
"""Overlapping spans which are not neatly nested should work"""
reactor = MemoryReactorClock()
clock = Clock(reactor)
scopes = []
async def task(i: int):
scope = start_active_span(
f"task{i}",
tracer=self._tracer,
)
scopes.append(scope)
self.assertEqual(self._tracer.active_span, scope.span)
await clock.sleep(4)
self.assertEqual(self._tracer.active_span, scope.span)
scope.close()
async def root():
with start_active_span("root span", tracer=self._tracer) as root_scope:
self.assertEqual(self._tracer.active_span, root_scope.span)
scopes.append(root_scope)
d1 = run_in_background(task, 1)
await clock.sleep(2)
d2 = run_in_background(task, 2)
# because we did run_in_background, the active span should still be the
# root.
self.assertEqual(self._tracer.active_span, root_scope.span)
await make_deferred_yieldable(
defer.gatherResults([d1, d2], consumeErrors=True)
)
self.assertEqual(self._tracer.active_span, root_scope.span)
with LoggingContext("root context"):
# start the test off
d1 = defer.ensureDeferred(root())
# let the tasks complete
reactor.pump((2,) * 8)
self.successResultOf(d1)
self.assertIsNone(self._tracer.active_span)
# the spans should be reported in order of their finishing: task 1, task 2,
# root.
self.assertEqual(
self._reporter.get_spans(),
[scopes[1].span, scopes[2].span, scopes[0].span],
)