This attempts to be a direct port of https://github.com/matrix-org/synapse-dinsic/pull/74 to mainline. There was some fiddling required to deal with the changes that have been made to mainline since (mainly dealing with the split of `RegistrationWorkerStore` from `RegistrationStore`, and the changes made to `self.make_request` in test code).
When receiving a /send_join request for a room with join rules set to 'restricted',
check if the user is a member of the spaces defined in the 'allow' key of the join
rules.
This only applies to an experimental room version, as defined in MSC3083.
Part of #9744
Removes all redundant `# -*- coding: utf-8 -*-` lines from files, as python 3 automatically reads source code as utf-8 now.
`Signed-off-by: Jonathan de Jong <jonathan@automatia.nl>`
This change ensures that the appservice registration behaviour follows the spec. We decided to do this for Dendrite, so it made sense to also make a PR for synapse to correct the behaviour.
Related: #8334
Deprecated in: #9429 - Synapse 1.28.0 (2021-02-25)
`GET /_synapse/admin/v1/users/<user_id>` has no
- unit tests
- documentation
API in v2 is available (#5925 - 12/2019, v1.7.0).
API is misleading. It expects `user_id` and returns a list of all users.
Signed-off-by: Dirk Klimpel dirk@klimpel.org
At the moment, if you'd like to share presence between local or remote users, those users must be sharing a room together. This isn't always the most convenient or useful situation though.
This PR adds a module to Synapse that will allow deployments to set up extra logic on where presence updates should be routed. The module must implement two methods, `get_users_for_states` and `get_interested_users`. These methods are given presence updates or user IDs and must return information that Synapse will use to grant passing presence updates around.
A method is additionally added to `ModuleApi` which allows triggering a set of users to receive the current, online presence information for all users they are considered interested in. This is the equivalent of that user receiving presence information during an initial sync.
The goal of this module is to be fairly generic and useful for a variety of applications, with hard requirements being:
* Sending state for a specific set or all known users to a defined set of local and remote users.
* The ability to trigger an initial sync for specific users, so they receive all current state.
`room_invite_state_types` was inconvenient as a configuration setting, because
anyone that ever set it would not receive any new types that were added to the
defaults. Here, we deprecate the old setting, and replace it with a couple of
new settings under `room_prejoin_state`.
This should fix a class of bug where we forget to check if e.g. the appservice shouldn't be ratelimited.
We also check the `ratelimit_override` table to check if the user has ratelimiting disabled. That table is really only meant to override the event sender ratelimiting, so we don't use any values from it (as they might not make sense for different rate limits), but we do infer that if ratelimiting is disabled for the user we should disabled all ratelimits.
Fixes#9663
Running `dmypy run` will do a `mypy` check while spinning up a daemon
that makes rerunning `dmypy run` a lot faster.
`dmypy` doesn't support `follow_imports = silent` and has
`local_partial_types` enabled, so this PR enables those options and
fixes the issues that were newly raised. Note that `local_partial_types`
will be enabled by default in upcoming mypy releases.
Currently federation catchup will send the last *local* event that we
failed to send to the remote. This can cause issues for large rooms
where lots of servers have sent events while the remote server was down,
as when it comes back up again it'll be flooded with events from various
points in the DAG.
Instead, let's make it so that all the servers send the most recent
events, even if its not theirs. The remote should deduplicate the
events, so there shouldn't be much overhead in doing this.
Alternatively, the servers could only send local events if they were
also extremities and hope that the other server will send the event
over, but that is a bit risky.
This bug was discovered by DINUM. We were modifying `serialized_event["content"]`, which - if you've got `USE_FROZEN_DICTS` turned on or are [using a third party rules module](17cd48fe51/synapse/events/third_party_rules.py (L73-L76)) - will raise a 500 if you try to a edit a reply to a message.
`serialized_event["content"]` could be set to the edit event's content, instead of a copy of it, which is bad as we attempt to modify it. Instead, we also end up modifying the original event's content. DINUM uses a third party rules module, which meant the event's content got frozen and thus an exception was raised.
To be clear, the problem is not that the event's content was frozen. In fact doing so helped us uncover the fact we weren't copying event content correctly.
Instead of if the user does not have a password hash. This allows a SSO
user to add a password to their account, but only if the local password
database is configured.
Fixes https://github.com/matrix-org/synapse/issues/9572
When a SSO user logs in for the first time, we create a local Matrix user for them. This goes through the register_user flow, which ends up triggering the spam checker. Spam checker modules don't currently have any way to differentiate between a user trying to sign up initially, versus an SSO user (whom has presumably already been approved elsewhere) trying to log in for the first time.
This PR passes `auth_provider_id` as an argument to the `check_registration_for_spam` function. This argument will contain an ID of an SSO provider (`"saml"`, `"cas"`, etc.) if one was used, else `None`.
Federation catch up mode is very inefficient if the number of events
that the remote server has missed is small, since handling gaps can be
very expensive, c.f. #9492.
Instead of going into catch up mode whenever we see an error, we instead
do so only if we've backed off from trying the remote for more than an
hour (the assumption being that in such a case it is more than a
transient failure).