waifu-diffusion-original/aesthetics/aesthetics.py

143 lines
3.7 KiB
Python

import webdataset as wds
from PIL import Image
import io
import matplotlib.pyplot as plt
import os
import json
from warnings import filterwarnings
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # choose GPU if you are on a multi GPU server
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
from torchvision import datasets, transforms
import tqdm
from os.path import join
from datasets import load_dataset
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import json
import clip
from PIL import Image, ImageFile
##### This script will predict the aesthetic score for this image file:
img_path = "../250k_data-0/img/000baa665498e7a61130d7662f81e698.jpg"
# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
#nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
#nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
def training_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def normalized(a, axis=-1, order=2):
import numpy as np # pylint: disable=import-outside-toplevel
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
model = MLP(768) # CLIP embedding dim is 768 for CLIP ViT L 14
s = torch.load("sac+logos+ava1-l14-linearMSE.pth") # load the model you trained previously or the model available in this repo
model.load_state_dict(s)
model.to("cuda")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model2, preprocess = clip.load("ViT-L/14", device=device) #RN50x64
@torch.inference_mode()
def aesthetic(img_path):
pil_image = Image.open(img_path)
image = preprocess(pil_image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model2.encode_image(image)
im_emb_arr = normalized(image_features.cpu().detach().numpy())
prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor))
return prediction.item()
import json
import glob
import shutil
imdir = '../250k_data-0/img/'
ext = ['png', 'jpg', 'jpeg', 'bmp']
images = []
[images.extend(glob.glob(imdir + '*.' + e)) for e in ext]
aesthetic_scores = {}
try:
for i in tqdm.tqdm(images):
try:
score = aesthetic(i)
except:
print(f'skipping {i}')
continue
if score < 5.0:
shutil.move(i, i.replace('img', 'nonaesthetic'))
elif score > 6.0:
shutil.move(i, i.replace('img', 'aesthetic'))
aesthetic_scores[i] = score
except KeyboardInterrupt:
pass
finally:
with open('scores.json', 'w') as f:
f.write(json.dumps(aesthetic_scores))